Investigation of NiO x -based contacts on p-GaN

  • J. Liday
  • I. Hotový
  • H. Sitter
  • P. Vogrinčič
  • A. Vincze
  • I. Vávra
  • A. Šatka
  • G. Ecke
  • A. Bonanni
  • J. Breza
  • C. Simbrunner
  • B. Plochberger
Article

Abstract

In this study we investigated the effect of a NiO x layer on the electrical properties of oxidized Au/NiO x /p-GaN ohmic contacts. Au/NiO x layers with a small concentration of oxygen in NiO x were deposited on p-GaN by reactive DC magnetron sputtering and annealed in a mixture of O2 + N2, and in N2. Auger electron spectroscopy (AES) and time-of-flight secondary ion mass spectrometry (TOF-SIMS) depth profiling in combination with transmission electron microscopy (TEM), field-emission scanning electron microscopy (FE SEM) and the circular transmission line method (CTLM) of contact resistance measurements of the contact structure with low content of oxygen in the NiO x layer have been used to explain the reduction of the contact resistance as a result of its anneal treatment. It has been found that creation of a metal/p-NiO/p-GaN contact structure due to annealing of the Au/NiO x /p-GaN structure in either N2 or O2 + N2 is the main mechanism that is responsible for the ohmic nature of the system. However, lowering of the contact resistance is similarly affected also by Ga atoms leaving the vacancies at the metal/p-GaN interface after diffusion of Ga into the metallic layer. The effect of various ways of cleaning the p-GaN surface prior to metallization on the contact resistance has also been investigated.

Keywords

Contact Resistance Auger Electron Spectroscopy Contact Structure Specific Contact Resistance Auger Electron Spectroscopy Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The work was supported by the Scientific Grant Agency of the Ministry of Education of the Slovak Republic and of the Slovak Academy of Sciences, No. 1/4079/07, 1/3095/06, 1/3076/06, R/S/FEI/04, Nem/Slov/1/DAAD and Slovak Research and Development Agency contract APVV–20–055405.

References

  1. 1.
    Z. Fan, S.N. Mohammad, W. Kim, Ö. Aktas, A.E. Botchkarev, H. Morkoc, Appl. Phys. Lett. 68, 1672 (1996)CrossRefGoogle Scholar
  2. 2.
    J.O. Song, S.J. Park, T.Y. Seong, Appl. Phys. Lett. 80, 3129 (2002)CrossRefGoogle Scholar
  3. 3.
    D.H. Youn, M. Hao, H. Sato, T. Sugahara, Y. Naoi, S. Sakai, Jpn. J. Appl. Phys. Part 1 37, 1768 (1998)CrossRefGoogle Scholar
  4. 4.
    L.C. Chen, C.Y. Hsu, W.H. Lan, S.Y. Teng, Solid-State Electron. 47, 1843 (2003)CrossRefGoogle Scholar
  5. 5.
    J.-O. Song, D.-S. Leem, T.-Y. Seong, Semicond. Sci. Technol. 19, 669 (2004)CrossRefGoogle Scholar
  6. 6.
    Q.Z. Liu, S.S. Lau, Solid-State Electron. 42, 667 (1998)CrossRefGoogle Scholar
  7. 7.
    J.L. Lee, J.K. Kim, J.W. Lee, Y.J. Park, T. Kim, Electrochem. Solid State Lett. 3, 53 (2000)CrossRefGoogle Scholar
  8. 8.
    J.S. Jang, K.H. Park, H.K. Jang, H.G. Kim, S.J. Park, J. Vac. Sci. Technol. B16, 3105 (1998)Google Scholar
  9. 9.
    R.H. Horng, D.S. Wuu, Y.Ch. Lien, W.H. Lan, Appl. Phys. Lett. 29, 2925 (2001)CrossRefGoogle Scholar
  10. 10.
    Y. Koide, T. Maeda, T. Kawakami, S. Fujita, T. Uemura, N. Shibata, M. Murakami, J. Electron. Mater. 28, 341 (1999)CrossRefGoogle Scholar
  11. 11.
    J.T. Trexler, S.J. Pearton, P.H. Holloway, M.G. Mier, K.R. Evans, Mat. Res. Soc. Symp. Proc. 449, 1091 (1997)Google Scholar
  12. 12.
    J.K. Ho, Ch.S. Jong, Ch.C. Chiu, Ch.N. Huang, C.Y. Chen, K.K. Shih, Appl. Phys. Lett. 74, 1275 (1999)CrossRefGoogle Scholar
  13. 13.
    J.K. Ho, Ch.S. Jong, Ch.C. Chiu, Ch.N. Huang, K.K. Shih, L.C. Chen, F.R. Chen, J.J. Kai, J. Appl. Phys. 86, 4491 (1999)CrossRefGoogle Scholar
  14. 14.
    T. Maeda, Y. Koide, M. Murakami, Appl. Phys. Lett. 75, 4145 (1999)CrossRefGoogle Scholar
  15. 15.
    D. Mistele, F. Fedler, H Klausing, T. Rotter, J. Stemmer, O.K. Semchinova, J. Aderhold, J. Crystal. Growth 230, 564 (2001)CrossRefGoogle Scholar
  16. 16.
    L.C. Chen, J.K. Ho, Ch.S. Jong, Ch.C. Chiu, K.K. Shih, F.R. Chen, J.J. Kai, L. Chang, J. Appl. Phys. 76, 3703 (2000)Google Scholar
  17. 17.
    H.W. Jang, S.Y. Kim, J.L. Lee, J. Appl. Phys. 94, 1748 (1748)CrossRefGoogle Scholar
  18. 18.
    R. Wenzel, G.G. Fischer, R. Schmid-Fetzer, Mater. Sci. Semicond. Process. 4, 357 (2001)CrossRefGoogle Scholar
  19. 19.
    M.R. Park, Y.J. Song, W.A. Anderson, ETRI J. 24, 349 (2002)Google Scholar
  20. 20.
    J. Narayan, H. Wang, T.H. Oh, H.K. Choi, J.C.C. Fan, Appl. Phys. Lett. 81, 3978 (2002)CrossRefGoogle Scholar
  21. 21.
    S.H. Wang, S.E. Mohney, R. Birkhahn, J. Appl. Phys. 91, 3711 (2002)CrossRefGoogle Scholar
  22. 22.
    J. Liday, I. Hotový, H. Sitter, K. Schmidegg, P. Vogrinčič, J. Breza, A. Bonnani, J. Electr. Eng. 56, 217–230 (2005)Google Scholar
  23. 23.
    I. Hotovy, J. Huran, L. Spiess, R. Capkovic, S. Hascik, Vacuum 58, 300 (2000)CrossRefGoogle Scholar
  24. 24.
    I. Hotovy, J. Liday, L. Spiess, H. Sitter, P. Vogrincic, Jpn. J. Appl. Phys. 42, L1178 (2003)CrossRefGoogle Scholar
  25. 25.
    C. J. Smithells (ed.). Metals Reference Book, 5th edn. (Butterworths, London & Boston, 1976), p. 1029Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • J. Liday
    • 1
  • I. Hotový
    • 1
  • H. Sitter
    • 2
  • P. Vogrinčič
    • 1
  • A. Vincze
    • 1
    • 3
  • I. Vávra
    • 4
  • A. Šatka
    • 1
  • G. Ecke
    • 5
  • A. Bonanni
    • 2
  • J. Breza
    • 1
  • C. Simbrunner
    • 2
  • B. Plochberger
    • 2
  1. 1.Department of MicroelectronicsSlovak University of TechnologyBratislavaSlovakia
  2. 2.Institute of Semiconductor and Solid State PhysicsJohannes Kepler UniversityLinzAustria
  3. 3.International Laser Center BratislavaBratislavaSlovakia
  4. 4.Institute of Electrical EngineeringSlovak Academy of SciencesBratislavaSlovakia
  5. 5.Center for Micro- and NanotechnologiesTechnical University of IlmenauIlmenauGermany

Personalised recommendations