Advertisement

Rotatable liquid crystal waveplate

  • Gary G. Wells
  • Carl V. BrownEmail author
Article

Abstract

A photoresist well of size 60 × 60 × 15 μm3 has been used to confine a droplet of nematic liquid crystal to create a rotatable waveplate. The optical texture of the droplet between crossed polarisers is consistent with the nematic n-director running substantially along a diameter of the droplet and connecting two nematic defects on the curved edges of the droplet. Electric field induced azimuthal rotation of the axis of the nematic liquid crystal droplet has been demonstrated. At higher temperatures, 30 °C and above, the droplet is more circular in shape and can be switched to arbitrary rotation angles. At lower temperatures, 25 °C and below, the sides of the droplet are straightened by the interaction with the well walls and the switching tends to favour discrete orientations of the optic axis. The shape of the time–voltage switching response curve for rotation by an angle of 40° also depends on the temperature of the droplet. A switching time that is inversely proportional to the voltage squared results when the droplet is nearest to circular in shape.

Keywords

Nematic Liquid Crystal S1813 Layer Polarisation Mode Dispersion Optical Texture Nematic Droplet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors gratefully acknowledge Drs. Newton, Roach, Shirtcliffe and Tsakonas at Nottingham Trent University for advice on device fabrication issues. GW gratefully acknowledges Kodak European Research Ltd. for funding.

References

  1. 1.
    C.D. Poole, J. Nagel, Polarization Effects in Lightwave Systems, Optical Fiber Telecommunications (Academic Press, San Diego, 1997)Google Scholar
  2. 2.
    Y. Ohtera, T. Chiba, S. Kawakami, IEEE Photonics Tech. Lett. 8(3), 390–392 (1996)CrossRefADSGoogle Scholar
  3. 3.
    T. Chiba, Y. Ohtera, S. Kawakami, J. Lightwave Tech. 17(5), 885 (1999)CrossRefADSGoogle Scholar
  4. 4.
    Z. Zhuang, S. Shuh, J.S. Patel, Opt. Lett. 24, 694–696 (1999)PubMedCrossRefADSGoogle Scholar
  5. 5.
    N.G. Walker, G.R. Walker, J. Lightwave Tech. 8(3), 438–458 (1990)CrossRefADSGoogle Scholar
  6. 6.
    B.R. Acharya, K.W. Baldwin, R.A. MacHarrie, J.A. Rogers, C.C. Huang, R. Pindak, Appl. Phys. Lett. 81(27), 5243 (2002)CrossRefADSGoogle Scholar
  7. 7.
    L. Dupont, J.D. de la Tocnaye, M. Le Gall, D. Penninckx, Opt. Commun. 176(1–3), 113–119 (2000)CrossRefADSGoogle Scholar
  8. 8.
    H.R. Kim, Y.W. Lee, S.J. Kim, D.W. Kim, C.J. Yu, B. Lee, S.D. Lee, Ferroelectrics 312, 479–484 (2004)CrossRefGoogle Scholar
  9. 9.
    S. Chandrasekhar, Liquid Crystals, 2nd edn. (Cambridge University Press, Cambridge, 1992)Google Scholar
  10. 10.
    P.G. de Gennes, J. Prost, The Physics of Liquid Crystals, 2nd edn. (Clarendon Press, Oxford, 1993)Google Scholar
  11. 11.
    L.M. Blinov, V.G. Chigrinov, Electrooptic Effects in Liquid Crystal Materials (Springer-Verlag, New York, 1993)Google Scholar
  12. 12.
    W.A. Crossland, T.D. Wilkinson, in Handbook of Liquid Crystals Volume 1: Fundamentals, ed. by D. Demus, J. Goodby, G.W. Gray, H.W. Speiss, V. Vill (Wiley-VCH, 1998)Google Scholar
  13. 13.
    P. Yeh, Optical Waves in Layered Media (Wiley-Interscience, New York, 2005)Google Scholar
  14. 14.
    SU8 (formulated in GBL) chemically amplified epoxy based negative resist. MicroChem Corporation, 1254 Chestnut Street, Newton, MA 02464, USAGoogle Scholar
  15. 15.
    E7 room temperature nematic liquid crystal, Liquid Crystals Division, Merck KGaA, 64271 Darmstadt, GermanyGoogle Scholar
  16. 16.
    E. Dubois-Violette, O. Parodi, J. Phys. 30, C4–C57 (1969)Google Scholar
  17. 17.
    P.S.J. Drzaic, Mol. Cryst. Liq. Cryst. 154, 289 (1988)CrossRefGoogle Scholar
  18. 18.
    G.G. Wells, C.V. Brown, Appl. Phys. Lett. 91, 223506 (2007)CrossRefADSGoogle Scholar
  19. 19.
    C. Tsakonas, A. Davidson, C.V. Brown, N.J. Mottram, Appl. Phys. Lett. 90, 111913 (2007)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.School of Science and TechnologyNottingham Trent UniversityNottinghamUK

Personalised recommendations