Optical fibre musical instruments: making sense of the senseless

  • Isabelle Christiane Fotsing-Djouwe
  • Mathieu Gagné
  • Jean-Jacques Laurin
  • Raman Kashyap
Article

Abstract

This paper demonstrates how the light transmitted through a stretched optical fibre may be used to detect its modes of vibration. In particular, replacing strings of a musical instrument with optical fibre allows the fabrication of a simple acoustic instrument with a single laser source and single detector. The detected signal contains rich harmonics of the vibrating fibre. This device may be used as a vibration, temperature or strain sensor, or simply as a musical instrument. Coating the optical fibre with novel materials such as PZLT may well allow a modification of vibration properties to enhance, suppress certain harmonics or lead to the development of simple electric field sensors.

Notes

Acknowledgements

Canada Research Chairs program of the Natural Science and Engineering Research Council of Canada is acknowledged by RK for research support and Hannah Kashyap is acknowledged for inspiration.

References

  1. 1.
    R. Kashyap, B.K. Nayar, An all single-mode fibre Michelson interferometer sensor. IEEE J. Lightwave Technol. LT-1(3), 619–624 (1983)CrossRefADSGoogle Scholar
  2. 2.
    R. Kashyap, M.H. Reeve, Single ended fibre strain and length measurement in the frequency domain. Electron. Lett. 16(18), 689–690 (1980)CrossRefGoogle Scholar
  3. 3.
    S. Hornung, R. Kashyap, M.H. Reeve, J.N. Russell, Axial strain in optical fibre cable manufacture and duct installation. IEEE J. Lightwave Technol. LT-1(2), 59–362 (1983)Google Scholar
  4. 4.
    R. Kashyap, S. Hornung, M.H. Reeve, S.A. Cassidy, Temperature de-sensitisation of delay in optical fibres for sensor applications. Electron. Lett. 19(24), 1039–1040 (1983)CrossRefADSGoogle Scholar
  5. 5.
    J.M. Lopez-Higurea (ed.), Handbook for Optical Fiber Sensing Technology (Wiley and Sons, New York, 2002)Google Scholar
  6. 6.
    S.M. Chandani, N.A.F. Jaeger, Fiber-optic temperature sensor using evanescent fields in D fibers. IEEE Photon. Technol. Lett. 17(12), 2706–2708 (2005)CrossRefADSGoogle Scholar
  7. 7.
    N.Y. Fan, S. Huang, R.M. Measures, Localized long gage fiber optic strain sensors. Smart Mater. Struct. 7(2), 257–264 (1998)  doi:10.1088/0964-1726/7/2/013 Google Scholar
  8. 8.
    S.W. James, M.L. Dockney, R.P. Tatam, Simultaneous independent temperature and strain measurement using in-fibre Bragg grating sensors. Electron. Lett. 32(12), 1133–1134 (1996)CrossRefGoogle Scholar
  9. 9.
    C. Haberstok, PhD Thesis, Die Holographische Modalanalyse, Technical University of Munich, 2005Google Scholar
  10. 10.
    M.G. Murphy, C.G. Papen, Modal noise models for optical fibers under restricted mode launch conditions. Lasers and Electro-Optics Society Annual Meeting, 1997. LEOS apos;97 10th Annual Meeting. Conference Proceedings, IEEE, vol. 2, Issue, 10–13 Nov 1997, pp. 122–123Google Scholar
  11. 11.
    K. Kageyama, H. Murayama, I. Ohsawa, M. Kanai, T. Motegi, K. Nagata, Y. Machijima, H. Matsumura, Development of a new fiber-optic acoustic/vibration sensor: principle, sensor performance, applicability to health monitoring and characteristic at elevated temperature, International Workshop on Structural Health Monitoring 2003, Stanford University, CA, 15–17 September 2003Google Scholar
  12. 12.
    C.F. Garcia, R. Kashyap, in High Sensitivity Non-birefringent Mach-Zender Interferometer for Sensing UV Induced Refractive Index Change Using a Unique Short Bi-moded Optical Fibre, ed. by T. Erdogan, E.J. Friebele, R. Kashyap. OSA Trends in Optical Photonics, Bragg Gratings, Photosensitivity, Poling in Glass Waveguides. The Optical Society of America, vol. 33 (2000), pp. 54–50Google Scholar
  13. 13.
    F.C. Garcia, M. Fokine, W. Margulis, R. Kashyap, Mach-Zehnder interferometer using single standard telecommunication optical fibre. Electron. Lett. 37(24), 1440–1442 (2001)CrossRefGoogle Scholar
  14. 14.
    A. Kumar, N.K. Goel, R.K. Varshney, Studies on a few-mode fiber-optic strain sensor based on LP01–LP02 mode interference. IEEE J. Lightwave Technol. 19(3), 58–362 (2001)CrossRefGoogle Scholar
  15. 15.
    O. Wang, G. Farrell, All-fiber multimode-interference-based refractometer sensor: proposal and design. Optics Lett. 31(3), 317–319 (2006)CrossRefADSGoogle Scholar
  16. 16.
    J. Ian, Measured Tones (IOP Publishing Ltd, Adam Hilger, Bristol, England, 1989), p. 114Google Scholar
  17. 17.
    R. Kashyap, P. Pantelis, Optical fibre absorption loss measurement using a pyroelectric poly(vinylidene fluoride) tube. J. Phys. D: Appl. Phys. 18, 709–1721 (1985)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Isabelle Christiane Fotsing-Djouwe
    • 1
  • Mathieu Gagné
    • 2
  • Jean-Jacques Laurin
    • 1
  • Raman Kashyap
    • 1
    • 2
  1. 1.Department of Electrical EngineeringEcole Polytechnique de Montreal, School of Engineering of the University of MontrealMontrealCanada
  2. 2.Department of Applied PhysicsEcole Polytechnique de Montreal, School of Engineering of the University of MontrealMontrealCanada

Personalised recommendations