Advertisement

White beam topography of 300 mm Si wafers

  • A. N. Danilewsky
  • J. Wittge
  • A. Rack
  • T. Weitkamp
  • R. Simon
  • T. Baumbach
  • P. McNally
Article

Abstract

Synchrotron X-ray topography is well suited for a detailed characterisation of the real structure of single crystals and devices based on single crystalline materials. The nature and distribution of dislocations, stacking faults, inclusions etc. as well as long range strain from processing are of high interest especially in semiconductor wafers and electronic devices. To overcome the limitations of the classical photographic film method, we use a high resolution digital imaging detector. The digital scan of selected reflections allows the fast mapping of large sample areas with high resolution in combination with the high dynamic range of the CCD-camera. We report our first applications to the metrology of 300 mm Si wafers.

Keywords

Photographic Film Diffraction Vector CdWO4 White Beam Linear Drive 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was supported by the European Community—Research Infrastructure Action under the FP6 ‘‘Structuring the European Research Area’’ Programme (through the Integrated Infrastructure Initiative ‘‘Integrating Activity on Synchrotron and Free Electron Laser Science’’. PMN gratefully acknowledges Science Foundation Ireland for funding this project under the Investigator Programme Grant scheme.

References

  1. 1.
    S.M. Hu, J.Appl. Phys. 70(6), R53–R80 (1991)CrossRefGoogle Scholar
  2. 2.
    R.F. Cook, J. Mat. Sci. 41, 841–872 (2006)CrossRefGoogle Scholar
  3. 3.
    T. Tuomi, K. Naukkarinen, P. Rabe, Phys. Stat. sol.(a) 25, 93 (1974)CrossRefGoogle Scholar
  4. 4.
    G. Weidemann, J. Goebbels, TH. Wolk, H. Riesemeier, BESSY Annual Report 2001, 249–250Google Scholar
  5. 5.
    N. Thompson, Proc. Phys. Soc. 66B, 481 (1953)Google Scholar
  6. 6.
    A.N. Danilewsky, R. Simon, A. Fauler, M. Fiederle, K.W. Benz, Nucl Instrum Methods Phys B 199(1), 7174 (2003)Google Scholar
  7. 7.
    R. Simon, A.N. Danilewsky, Nucl Instrum Methods Phys B 199(1), 550–553 (2003)CrossRefGoogle Scholar
  8. 8.
    U. Bonse and F. Busch, Prog. Biophys. Mol. Biol. 65, 133–169 (1996)CrossRefGoogle Scholar
  9. 9.
    A.N. Danilewsky, J. Wittge, A. Rack, T. Weitkamp, R. Simon, NIM-B 2007, submittedGoogle Scholar
  10. 10.
    A.N. Danilewsky, J. Wittge, A. Rack, T. Weitkamp, R. Simon, Z. Krist. Suppl. 25 (2007)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • A. N. Danilewsky
    • 1
  • J. Wittge
    • 1
  • A. Rack
    • 2
  • T. Weitkamp
    • 2
  • R. Simon
    • 2
  • T. Baumbach
    • 2
  • P. McNally
    • 3
  1. 1.Kristallographisches InstitutUniversity FreiburgFreiburg i. BrGermany
  2. 2.Institut für SynchrotronstrahlungResearch Centre KarlsruheKarlsruheGermany
  3. 3.Research Institute for Networks and Communications EngineeringDublin City UniversityDublinIreland

Personalised recommendations