Characterization of optical, electrical and structural properties of silverphthalocyanine thin films

  • O. P. JaseenthaEmail author
  • C. S. Menon


Silverphthalocyanine thin films are deposited on to glass substrates by thermal evaporation technique. Optical data have been obtained from both absorption and reflectivity spectra over the wavelength range 350–900 nm. The absorption coefficient α and extinction coefficient k are estimated from the spectrum. The mechanism of optical absorption follows the rule of direct transition. Using α and k, the refractive index and the dielectric constants are determined. Electrical conductivity studies are done at different substrate temperatures and using the Arrhenius plot the activation energy in the intrinsic region and impurity region is estimated. From the X-ray diffractograms of AgPc thin films subjected to heat treatments the variation of grain size is also studied. The scanning electron microscopy images are taken to study the surface morphology of the films. Silver phthalocyanine thin film is expected to find application in the fabrication of organic transistors and LED devices.


Substrate Temperature Phthalocyanine Fundamental Absorption Edge High Substrate Temperature Thermal Activation Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

List of Symbols


Absorption coefficient alpha

Photon energy




Extinction coefficient




Refractive index


Real dielectric constant


Imaginary dielectric constant

kb in 3.26

Boltzmann constant


Electrical conductivity


Eta-width of strongest peak



We extend our sincere feeling of gratitude to Government of India, State Government of Kerala and Nirmala College, Muvattupuzha for the award of fellowship under FIP of UGC to complete this work.


  1. 1.
    S.R. Forrest, Nature 428, 911 (2004)CrossRefGoogle Scholar
  2. 2.
    K. Xiao, Y. Liu, G. Yu, D. Zhu, Appl. Phys. A 77, 367 (2003)CrossRefGoogle Scholar
  3. 3.
    K. Kudo, D.X. Wang, M. Lizuka, S. Kuriyoshi, K. Tanaka, Synth. Met. 111, 11 (2002)CrossRefGoogle Scholar
  4. 4.
    F. Schauer, I. Zhikov, S. Nespurek, J. Non-Cryst. Solids 266, 999 (2000)CrossRefGoogle Scholar
  5. 5.
    N.R. Amstrong, J. Porphyrins Phthalocyanine 4, 417 (2000)Google Scholar
  6. 6.
    R.D. Gould, Coord. Chem. Rev. 156, 217 (1996)CrossRefGoogle Scholar
  7. 7.
    R.A. Collins, A. Belgachi, Mater. Lett. 9, 349 (1989)CrossRefGoogle Scholar
  8. 8.
    R.A. Collins, K.R. Strickland, M.J. Jeffery, K. Davison, T.A. Jones, Mater. Lett. 10, 170 (1990)CrossRefGoogle Scholar
  9. 9.
    A.O. Abu-Hilal, M. Saleh, R.D. Gould, Mater. Chem. Phys. 94, 165 (2005)CrossRefGoogle Scholar
  10. 10.
    K. Masamitsu, T. Takayuki, T. Takahisa, K. Hirotake, O. Yutaka, Jpn. J. Appl. Phys. 42, 2523–2525 (2003)CrossRefGoogle Scholar
  11. 11.
    A.M. Saleh, A.O. Abu-Hilal, R.D. Gould, Curr. Appl. Phys. 3, 345–350 (2003)CrossRefGoogle Scholar
  12. 12.
    M.E. Azim-Araghi, A. Krrier, Pure Appl. Opt. 6, 443–453 (1997)CrossRefGoogle Scholar
  13. 13.
    T.G. Abdul-Mali, A.Z. Aly, A.M. Abdeen, H.M. El-Labany, Phys. Status Sol. A. 76, 651 (1983)CrossRefGoogle Scholar
  14. 14.
    L.I. Maisal, R. Glang, Hand Book of Thin Film Technology (McGraw-Hill, New York, 1985)Google Scholar
  15. 15.
    E.A. Ough, S.M. Stillman, Can. J. Chem. 71, 1891 (1993)CrossRefGoogle Scholar
  16. 16.
    A.T. Davidson, J. Chem. Phys. 77, 168 (1982)CrossRefGoogle Scholar
  17. 17.
    K.K. Lee, N.H. Sabelli, P.R. Le Breton, J. Phys. Chem. 86, 3926 (1982)CrossRefGoogle Scholar
  18. 18.
    R.A. Collins, A. Krier, A.K. Abass, Thin Solid Films 229, 113 (1993)CrossRefGoogle Scholar
  19. 19.
    J. Bardeen, E.J. Slatt, L. Hall, in Proceedings of the Conference on Photoconductivity (Wiley, New York, 1965)Google Scholar
  20. 20.
    E.A. Lucia, F.D. Vederame, J. Chem. Phys. 48, 2674 (1968)CrossRefGoogle Scholar
  21. 21.
    Y.A. Verzimakha, A.V. Kovalchuk, C. Hamann, M.V. Kurik, M. Muller, Phys. Stat. Sol. (a) 74 K109 (1982)CrossRefGoogle Scholar
  22. 22.
    A.K. Hassan, R.D. Gould, J. Phys: Condens. Matter. 1, 6679 (1989)CrossRefGoogle Scholar
  23. 23.
    J.R. Christmn, Fundamentals of Solid State Physics (John Wiley and Sons, New York, 1988)Google Scholar
  24. 24.
    F. Iwatsu, T. Kohayashi, N. Uyeda, J. Phys. Chem. 84, 3223 (1990)CrossRefGoogle Scholar
  25. 25.
    J. Puigdollers, C. Voz, M. Fonrodona, B. Cheylan, M. Stella, J. Andreu, M. Vetter, R. Alcubilla, J. Non-Cry. Solids 352, 1778–1782 (2006)CrossRefGoogle Scholar
  26. 26.
    A.T.J. Parr, S.J. Vintor, A. Krier, R.A. Collins, Czech. J. Phys. 43, 969 (1993)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.School of Pure and Applied PhysicsMahatma Gandhi UniversityKottayamIndia

Personalised recommendations