Optical properties of nanocrystalline silicon deposited by PECVD

  • M. R. Esmaeili-Rad
  • A. Sazonov
  • A. G. Kazanskii
  • A. A. Khomich
  • A. Nathan


Nanocrystalline silicon (nc-Si) thin films were deposited by 13.56 MHz plasma enhanced chemical vapor deposition (PECVD) using silane plasma highly diluted in hydrogen to induce microstructural changes from amorphous to nanocrystalline. Raman spectroscopy measurements showed that nc-Si films can be obtained at hydrogen dilutions greater than 98%. High hydrogen dilution in conjunction with high reactor pressure lead to lower absorption of photon energies less than 1.1 eV, and, consequently, to lower defect density inside nc-Si thin films. The nc-Si dark conductivity, dark conductivity activation energy, and photosensitivity were in the range 10−6 S/cm, 0.43 eV, and 10-20, respectively. Photocurrent spectra showed absorption peaks at photon energies around 2.5, 3.2, and 4.5 eV. Measured optical bandgaps were in the range of 2.3–2.5 eV.


Optical Bandgap Plasma Enhance Chemical Vapor Deposition Dark Conductivity High Reactor Pressure Nanocrystalline Silicon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    A. Shah, E. Vallat-Sauvain, P. Torres, J. Meier, U. Kroll, C. Hof, C. Droz, M. Goerlitzer, N. Wyrsch, M. Vanecek, Mater. Sci. Eng. B 69–70, 219 (2000)CrossRefGoogle Scholar
  2. 2.
    C.-H. Lee, A. Sazonov, A. Nathan, Appl. Phys. Lett. 86, 222106 (2005)CrossRefGoogle Scholar
  3. 3.
    I-C. Cheng, S. Allen, S. Wagner, J. Non-Cryst. Solids 338–340, 720 (2004)CrossRefGoogle Scholar
  4. 4.
    P. Roca i Cabarrocas, R. Brenot, P. Bulkin, R. Vanderhaghen, B. Drevillon, I. French, J. Appl. Phys. 86, 7079 (1999)CrossRefGoogle Scholar
  5. 5.
    M.R. Esmaeili Rad, C.-H. Lee, A. Sazonov, A. Nathan, Mat. Res. Soc. Symp. Proc. 910, A22-13 (2006)Google Scholar
  6. 6.
    C.-H. Lee, D. Striakhilev, A. Nathan, J. Vac. Sci. Technol. A 22(3), 991 (2004)CrossRefGoogle Scholar
  7. 7.
    J. Kočka, A. Fejfar, H. Stuchlíková, J. Stuchlík, P. Fojtík, T. Mates, B. Rezek, K. Luterová, V. Švrček, I. Pelant, Sol. Energ. Mat. Sol. C. 78, 493 (2003) CrossRefGoogle Scholar
  8. 8.
    U. Das, S. Morrison, E. Centurioni, A. Madan, IEE Proc.-Circ. Dev. Syst., 150, 282 (2003)CrossRefGoogle Scholar
  9. 9.
    A. Poruba, A. Fejfar, Z. Remeš, J. Špringer, M. Vaněček, J. Kočka, J. Meier, P. Torres, A. Shah, J. Appl. Phys. 88, 148 (2000)CrossRefGoogle Scholar
  10. 10.
    S. Lebib, P. Roca i Cabarrocas, J. Appl. Phys. 97, 104334 (2005)CrossRefGoogle Scholar
  11. 11.
    R. Platz, S. Wagner, Appl. Phys. Lett. 73, 1236 (1998)CrossRefGoogle Scholar
  12. 12.
    D. Han, G. Yue, J.D. Lorentzen, J. Lin, H. Habuchi, Q. Wang, J. Appl. Phys. 87, 1882 (2000)CrossRefGoogle Scholar
  13. 13.
    S. Furukawa, T. Miyasato, Phys. Rev. B 38, 5726 (1988)CrossRefGoogle Scholar
  14. 14.
    I. Milostnaya, T. Allen, F. Gaspari, N.P. Kherani, D. Yeghikyan, W.L. Roes, T. Kosteski, S. Zukotynski, Mat. Res. Soc. Symp. Proc. 762, A6.15.1 (2003)Google Scholar
  15. 15.
    A.H. Mahan, R. Biswas, L.M. Gedvilas, D.L. Williamson, B.C. Pan, J. Appl. Phys. 96, 3818 (2004)CrossRefGoogle Scholar
  16. 16.
    S. Adachi, H. Mori, S. Ozaki, Physic. Rev. B 66, 153201 (2002)CrossRefGoogle Scholar
  17. 17.
    K.H. Jun, R. Carius, H. Stiebig, Physic. Rev. B, 66, 115301 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • M. R. Esmaeili-Rad
    • 1
  • A. Sazonov
    • 1
  • A. G. Kazanskii
    • 2
  • A. A. Khomich
    • 2
  • A. Nathan
    • 3
  1. 1.Department of Electrical and Computer EngineeringUniversity of WaterlooWaterlooCanada
  2. 2.Faculty of PhysicsMoscow State UniversityMoscowRussia
  3. 3.London Centre for NanotechnologyUniversity College LondonLondonUK

Personalised recommendations