Advertisement

Near-field scanning optical microscopy of quantum dot broad area laser diodes

  • S. I. Jung
  • H. Y. Yeo
  • I. YunEmail author
  • J. Y. Leem
  • I. K. Han
  • J. S. Kim
  • J. I. LeeEmail author
Original Paper

Abstract

Near-field scanning optical microscopy (NSOM) studies of self-assembled InAs quantum dot broad area laser diodes (QD-BALDs) with different active layer were performed. The high resolution (<100 nm) of NSOM provides a detailed mapping of the laser output from the active region. Representative near-field electroluminescence (EL) spectra taken the cross section of the QD-BALD structures below and above the lasing threshold are plotted. Moreover, spatially resolved near-field scanning images of the waveguide are obtained by collecting the EL as the tip is scanned across the surface. Such near-field measurements show a relationship between laser emission and different active layer structure.

Keywords

Active Layer Atomic Layer Epitaxy Lower Threshold Current Density Active Layer Structure Reemission Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    J.S. Kim, J.H. Lee, S.U. Hong, H.-S. Kwack, C.W. Lee, D.K. Oh, ETRI. J. 26, 475 (2004)Google Scholar
  2. 2.
    M. Grundmann, O Stier, D Bimberg, Phys. Rev. B 52, 11969 (1995)CrossRefGoogle Scholar
  3. 3.
    S.I. Jung, J.J. Yoon, H.J. Park, Y.M. Park, M.H. Jeon, J.Y. Leem, C.M. Lee, E.T. Cho, J.I. Lee, J.S. Kim, J.S. Son, J.S. Kim, D.Y. Lee, I.K. Han, Physica E 26, 100 (2005)CrossRefGoogle Scholar
  4. 4.
    K. Nishi, H. Satio, S. Sugou, J.S. Lee, Appl. Phys. Lett. 74, 1111 (1999)CrossRefGoogle Scholar
  5. 5.
    U. Durig, D.W. Pohl, F. Rohner, J. Appl. Phys. 59, 3318 (1986)CrossRefGoogle Scholar
  6. 6.
    E. Betzig, J.K. Trautman, Science 257, 189 (1992)CrossRefGoogle Scholar
  7. 7.
    B.B. Goldberg, M.S. Ünlü, W.D. Herzog, H.F. Ghaemi, E. Towe, IEEE J. Sel. Topics Quantum Electron 1, 1073 (1995)Google Scholar
  8. 8.
    S.K. Buratto, J.W.P. Hsu, E. Betzig, J.K. Trautman, R.B. Bylsma, C.C. Bahr, M.J. Cardillo, Appl. Phys. Lett. 65, 2654 (1994)CrossRefGoogle Scholar
  9. 9.
    I.K. Han, D.C. Heo, J.D. Song, J.I. Lee, J. Korean, Phys. Soc. 45, 1193 (2004)Google Scholar
  10. 10.
    I.K. Han, J. Korean, Phys. Soc. 45, S868 (2004)Google Scholar
  11. 11.
    J. Oswald, E. Hulicius, J. Pangrac, K. Melichar, T. Simecek, O. Petricek, M. Vancura, J. Hradil, Thin Solid Films 380, 233 (2000)CrossRefGoogle Scholar
  12. 12.
    S. Nakamura, M. Senoh, N. Iwasa, S. Nagahama, Jpn. J. Appl. Phys. Lett. 34, L797 (1995)CrossRefGoogle Scholar
  13. 13.
    A. Richter, Ch. Lienau, J.W. Tomm, Surf. Interface Anal. 25, 573 (1997)CrossRefGoogle Scholar
  14. 14.
    B.B. Goldberg, M.S. Unlu, W.D. Herzog, H.F. Ghaemi, E. Towe, IEEE J. Sel. Top. Quant. 1, 1073 (1995)CrossRefGoogle Scholar
  15. 15.
    J.W. Tomm, T. Gunther, Ch. Lienau, A. Gerhardt, J. Donecker, J. Cryst. Growth 210, 296 (2000)CrossRefGoogle Scholar
  16. 16.
    M. De Giorgi, A. Passaseo, R. Rinaldi, T. Johal, R. Cingolani, A. Taurino, M. Catalano, P. Crozier, Phys. Stat. Sol. B 224, 17 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of Electrical and Electronic EngineeringYonsei UniversitySeoulRepublic of Korea
  2. 2.School of Nano Engineering, Institute for Nanotechnology ApplicationsInJe UniversityKimhaeRepublic of Korea
  3. 3.Nano Devices Research Center, Korea Institute of Science and Technology (KIST)SeoulRepublic of Korea
  4. 4.Basic Research Laboratory, Electronics and Telecommunications Research Institute (ETRI)DaejeonRepublic of Korea
  5. 5.Advanced Industrial Metrology Group, Korea Research Institute of Standards and Science (KRISS)DaejeonRepublic of Korea

Personalised recommendations