Advertisement

Optical properties of silver containing As–S–Se thin films

  • M. Krbal
  • T. WagnerEmail author
  • M. Vlcek
  • M. Frumar
Article

Abstract

The As33S67- y Se y , where y = 0, 16.75, 33.5, 50.25 and 67, amorphous thin films were prepared by vacuum thermal evaporation technique. Range of the silver content dissoluted in films was x = 0 – 25 at. %. The refractive index increase with increasing silver and selenium content. The difference of the refractive index (Δn) between undoped and silver doped films was ∼ 0.4 and between As33S67 and As33Se67 was films ∼ 0.42. The values of non-linear refractive index grow with increasing silver and selenium content. The difference of optical bandgap, ΔE g opt , between undoped As33S67 and fully dopped films with Ag and Se was ∼ 1 eV.

Keywords

Chalcogenide Glass Silver Content Selenium Content Ag2Se Chalcogen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Financial support from the Research Centre of University of Pardubice and Institute of Inorganic Chemistry ASCR, Research Centre LC523, and Project VZ 0021627501 of Ministry of Education, Youth and Sports of Czech Republic, Grant Agency of Czech Republic Grant GA 203/05/524, 203/06/1368 are greatly acknowledged.

References

  1. 1.
    J.S. Sanghera, I.D. Aggarwal, J. Non-Cryst. Solids 256&257, 6 (1999)CrossRefGoogle Scholar
  2. 2.
    S. Noach, M. Manevich, N.P. Eisenberg, D. Davidov, M. Klebanov, V. Lyubin, Opt. Mater. 28, 1054 (2006)CrossRefGoogle Scholar
  3. 3.
    M. Krbal, T. Wagner, Mil. Vlcek, Mir. Vlcek, M. Frumar, J. Non-Cryst. Solids 352, 2662 (2006)CrossRefGoogle Scholar
  4. 4.
    J.M. Laniel, J.M. Menard, K. Turcotte, A. Villeneuve, R. Vallee, C. Lopez, K.A. Richardson, J. Non-Cryst. Solids 328, 183 (2003)CrossRefGoogle Scholar
  5. 5.
    K. Ogusu, S. Maeda, M. Kitao, H. Li a M. Minakata, J. Non-Cryst. Solids 347, 159 (2004)CrossRefGoogle Scholar
  6. 6.
    A.V. Kolobov, Photo-induced Metastability in Amorphous Semiconductors, (Wiley-VCH, Weinheim, 2003)Google Scholar
  7. 7.
    T.I. Kosa, T. Wagner, P.J.S. Ewen, A.E. Owen, Phil. Mag B 71, 311 (1995)CrossRefGoogle Scholar
  8. 8.
    R. Swanepoel, J. Phys. E.: Sci. Instrum. 16, 1214 (1983)CrossRefGoogle Scholar
  9. 9.
    S.H. Wemple, M. Di Domenico, Phys. Rev. B 3, 3767 (1971)CrossRefGoogle Scholar
  10. 10.
    S.H. Kim, T.J. Yoko, J. Am. Ceram. Soc. 78, 1061 (1995)CrossRefGoogle Scholar
  11. 11.
    H. Ticha, L. Tichy, J. Optoel. Adv. Mat.4, 381 (2002)Google Scholar
  12. 12.
    W.L. Smith, in M.J. Weber (ed.), Handbook of Laser Science and Technology, vol 3, part 1(Chemical Rubber Co., Boca Raton), (1986), p. 259Google Scholar
  13. 13.
    J. Tauc, (ed. by J. Tauc) Amorphous and Liquid Semiconductors, (Plenum, New York, 1974), p. 171Google Scholar
  14. 14.
    M. Itoh, J. Non-Cryst. Solids 210, 178 (1997)CrossRefGoogle Scholar
  15. 15.
    A. Hasegawa, Solid State Ionics 15, 81 (1986)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of General and Inorganic ChemistryUniversity of PardubicePardubiceCzech Republic
  2. 2.Joint Laboratory of Solid State Chemistry of the University of Pardubice and the Institute of Macromolecular Chemistry of AS CRPardubiceCzech Republic

Personalised recommendations