Temperature effects on the electrical conductivity of thiol encapsulated gold nanoparticle thin films

  • Nicholas Jon HardyEmail author
  • Marcus D. Hanwell
  • Tim H. Richardson


Presented in this paper are results demonstrating the irreversibility in conductivity changes seen for thin, Langmuir–Schaeffer deposited thiol encapsulated gold nanoparticle films raised to a high temperature. The conductivity changes from low values that rapidly increase at higher temperature, to values that remain high and are almost linear with temperature. Comparisons are made to the expected behavior predicted by the conventional model of electron hopping in metal nanoparticle films.


Surface Plasmon Resonance Peak Plasmon Peak Nanoparticle Film Langmuir Film Brewster Angle Microscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The Authors would like to thank Dr Frank Grunfeld of Nima Technology Ltd. for funding a Ph.D. studentship (NJH).


  1. 1.
    S.D. Evans, S.R. Johnson, Y.L. Cheng, T. Shen, J. Mat. Chem. 10, 183 (2000)CrossRefGoogle Scholar
  2. 2.
    F.P. Zamborini, M.C. Leopold, J.F. Hicks, P.J. Kulesza, M.A. Malik, R.W. Murray, J. Am. Chem. Soc. 124, 8958 (2002)CrossRefGoogle Scholar
  3. 3.
    C. Kurdak, J. Kim, L.A. Farina, K.M. Lewis, X. Bai, M.P. Rowe, A.J. Matzger, Turk. J. Phys. 27, 419 (2003)Google Scholar
  4. 4.
    F.J. Ibanez, U. Gowrishetty, M.M. Crain, K.M. Walsh, F.P. Zamborini, Anal. Chem. 78, 753 (2006)CrossRefGoogle Scholar
  5. 5.
    C.A. Neugebauer, M.B. Webb, J. Appl. Phys. 33, 74 (1962)CrossRefGoogle Scholar
  6. 6.
    W.P. Wuelfing, S.J. Green, J.J. Pietron, D.E. Cliffel, R.W. Murray, J. Am. Chem. Soc. 122, 11465 (2000)CrossRefGoogle Scholar
  7. 7.
    M. Brust, M. Walker, D. Bethell, D.J. Schiffrin, R. Whyman, J. Chem.Soc.,Chem. Commun. 801(1994)Google Scholar
  8. 8.
    S.Y. Heriot, J-M Pedrosa, L. Camacho, T.H. Richardson, Mat. Sci. Eng. C 26, 154 (2006)CrossRefGoogle Scholar
  9. 9.
    M.M. Miller, A.A. Lazarides, J. Phys. Chem. B 109, 21556 (2005)CrossRefGoogle Scholar
  10. 10.
    M. Zangeneh, R. Terrill, in Dekker Encyclopedia of Nanoscience and Nanotechnology (Marcel Dekker Inc., New York, 2004), pp. 3819–3830Google Scholar
  11. 11.
    T. Atay, J. Song, A.V. Nurimikko, Nano Letters 4(9), 1627 (2004)CrossRefGoogle Scholar
  12. 12.
    W. Rechberger, A. Hohenau, A. Leitner, J.R. Krenn, B. Lamprecht, F.R. Aussenegg, Opt. Commun. 220, 137 (2003)CrossRefGoogle Scholar
  13. 13.
    J.B. Pelka, M. Brust, P. Gierlowski, W. Paszkowicz, N. Schell, Appl. phys. Lett. 89, 063110 (2006)CrossRefGoogle Scholar
  14. 14.
    M.D. Hanwell, S.Y. Heriot, T.H. Richardson, N. Cowlam, I.M. Ross, Colloids Surf. A 284–285, 379 (2006)CrossRefGoogle Scholar
  15. 15.
    S. Sun, P. Mendes, K. Critchley, S. Diegoli, M. Hanwell, S. Evans, J. Leggett, J.A. Preece, T.H. Richardson, Nano Lett. 6, 345 (2006)CrossRefGoogle Scholar
  16. 16.
    A. Panin, A. Shugurov, J. Schreiber, Surf. Sci. 524, 191 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Nicholas Jon Hardy
    • 1
    Email author
  • Marcus D. Hanwell
    • 1
  • Tim H. Richardson
    • 1
  1. 1.Physics and AstronomyThe University of SheffieldSheffieldUK

Personalised recommendations