Investigation of interfacial reaction and joint reliability between eutectic Sn–3.5Ag solder and ENIG-plated Cu substrate during high temperature storage test

  • Jeong-Won Yoon
  • Hyun-Suk Chun
  • Seung-Boo Jung


The interfacial reactions between Sn–3.5Ag (in wt.%) solder and an electroless nickel-immersion gold (ENIG)-plated Cu substrate were investigated during isothermal aging at 200 °C for up to 1000 h. Long term and high temperature aging conditions were needed to investigate the phase transformation of Ni(P) layer into the Ni–Sn–P ternary layer by way of transformation of Ni3P. The Ni(P) layer transformed into the P-rich Ni3P layer partially, and the transformed Ni3P layer also transformed into the Ni2SnP ternary layer with the consumption of Ni atoms coincident with the reaction of Sn atoms from the solder. After aging for 500 h, (Ni,Cu)3Sn4 and (Cu,Ni)6Sn5 intermetallic compounds (IMCs) were formed on the transformed Ni2SnP ternary layer by solid-state interfacial reaction. Cu6Sn5 and Cu3Sn IMCs were also formed below the transformed Ni2SnP layer because of serious diffusion reaction in the solder joints. During aging at 200 °C, the main interfacial IMC changed in the following order: Ni3Sn4; (Ni,Cu)3Sn4; (Cu,Ni)6Sn5. After aging for 1000 h, cracks formed between the Ni2SnP or Ni3P layer and the Cu6Sn5 IMC or Cu substrate. The shear test results showed that the aged solder joint fractured along the interface and the presence of the brittle IMC layers leaded to a mechanically very weak interface.


Solder Joint Solder Ball Under Bump Metallurgy Cu3Sn IMCs Kirkendall Void 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by grant No. RTI04-03-04 from the Regional Technology Innovation Program of the Ministry of Commerce, Industry and Energy (MOCIE).


  1. 1.
    K. Zeng, K.N. Tu, Mater. Sci. Eng. R. 38, 55 (2002)CrossRefGoogle Scholar
  2. 2.
    M. Abtew, G. Selvaduray, Mater. Sci. Eng. R. 27, 95 (2000)CrossRefGoogle Scholar
  3. 3.
    J.W. Yoon, S.B. Jung, J. Mater. Sci. 39, 4211 (2004)CrossRefGoogle Scholar
  4. 4.
    J.W. Yoon, S.W. Kim, S.B. Jung, Mater. Trans. 45, 727 (2004)CrossRefGoogle Scholar
  5. 5.
    H.Y. Lu, H. Balkan, K.Y.S. Ng, J. Mater. Sci: Mater. Electron. 17, 171 (2006)CrossRefGoogle Scholar
  6. 6.
    J.W. Yoon, C.B. Lee, S.B. Jung, Mater. Trans. 43, 1821 (2002)CrossRefGoogle Scholar
  7. 7.
    K. Suganuma, Curr. Opin. Solid State Mater. Sci. 5, 55 (2001)CrossRefGoogle Scholar
  8. 8.
    J.W. Yoon, S.W. Kim, J.M. Koo, D.G. Kim, S.B. Jung, J. Electron. Mater. 33, 1190 (2004)Google Scholar
  9. 9.
    J.W. Yoon, C.B. Lee, S.B. Jung, J. Electron. Mater. 32, 1195 (2003)Google Scholar
  10. 10.
    C.H. Yu K.L. Lin, J. Mater. Res. 20, 1242 (2005)CrossRefGoogle Scholar
  11. 11.
    Y. Sogo, T. Hojo, H. Iwanishi, A. Hirose, K.F. Kobayashi, A. Yamaguch, A. Furusawa, K. Nishida, Mater. Trans. 45, 734 (2004)CrossRefGoogle Scholar
  12. 12.
    M. Date, T. Shoji, M. Fujiyoshi, K. Sato, K.N. Tu, Scr. Mater. 51, 641 (2004)CrossRefGoogle Scholar
  13. 13.
    C.B. Lee, J.W. Yoon, S.J. Suh, S.B. Jung, C.W. Yang, C.C. Shur, Y.E. Shin, J. Mater. Sci: Mater. Electron. 14, 487 (2003)CrossRefGoogle Scholar
  14. 14.
    C.W. Huang, K.L. Lin, Mater. Trans. 45, 588 (2004)CrossRefGoogle Scholar
  15. 15.
    J.W. Yoon, S.B. Jung, J. Mater. Res. 21, 1590 (2006)CrossRefGoogle Scholar
  16. 16.
    K. Suganuma, T. Murata, H. Noguchi, Y. Toyoda, J. Mater. Res. 15, 884 (2000)Google Scholar
  17. 17.
    J.W. Yoon, S.W. Kim, S.B. Jung, J. Alloys Comp. 391, 82 (2005)CrossRefGoogle Scholar
  18. 18.
    J.W. Yoon, S.B. Jung, Microelectron. Reliab. 46, 905 (2006)CrossRefGoogle Scholar
  19. 19.
    Website: Scholar
  20. 20.
    Y.C. Lin, J.G. Duh, Scripta Mater. 54, 1661 (2006)CrossRefGoogle Scholar
  21. 21.
    C.B. Lee, S.B. Jung, Y.E. Shin, C.C. Shur, Mater. Trans. 43, 1858 (2002)CrossRefGoogle Scholar
  22. 22.
    M.N. Islam, Y.C. Chan, A. Sharif, J. Mater. Res. 19, 2897 (2004)CrossRefGoogle Scholar
  23. 23.
    W.C. Luo, C.E. Ho, J.Y. Tsai, Y.L. Lin, C.R. Kao, Mater. Sci. Eng. A. 396, 385 (2005)CrossRefGoogle Scholar
  24. 24.
    C.H. Wang, S.W. Chen, Acta Mater. 54, 247 (2006)CrossRefGoogle Scholar
  25. 25.
    A. Kumar, M. He, Z. Chen, P.S. Teo, Thin Solid Films 462–463, 413 (2004)CrossRefGoogle Scholar
  26. 26.
    M.O. Alam, Y.C. Chan, K.N. Tu, J. Appl. Phys. 94, 4108 (2003)CrossRefGoogle Scholar
  27. 27.
    J.W. Jang, D.R. Frear, T.Y. Lee, K.N. Tu, J. Appl. Phys. 88, 6359 (2000)CrossRefGoogle Scholar
  28. 28.
    S.J. Wang, C.Y. Liu, Scripta Mater. 49, 813 (2003)CrossRefGoogle Scholar
  29. 29.
    A. Sharif, M.N. Islam, Y.C. Chan, Mater. Sci. Eng. B. 113, 184 (2004)CrossRefGoogle Scholar
  30. 30.
    A. Kumar, Z. Chen, S.G. Mhaisalkar, C.C. Wong, P.S. Teo, V. Kripesh, Thin Solid Films 504, 410 (2006)CrossRefGoogle Scholar
  31. 31.
    A. Sharif, Y.C. Chan, Thin Solid Films 504, 431 (2006)Google Scholar
  32. 32.
    S.W. Kim, J.W. Yoon, S.B. Jung, J. Electron. Mater. 33, 1182 (2004)Google Scholar
  33. 33.
    J.W. Yoon, S.B. Jung, J. Alloys. Comp. 396, 122 (2005)CrossRefGoogle Scholar
  34. 34.
    J.W. Jang, P.G. Kim, K.N. Tu, D.R. Frear, P. Thompson, J. Appl. Phys. 85, 8456 (1999)CrossRefGoogle Scholar
  35. 35.
    J.W. Yoon, C.B. Lee, D.U. Kim, S.B. Jung, Met. Mater. Int. 9, 193 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.School of Advanced Materials Science and EngineeringSungkyunkwan UniversityJangan-gu, SuwonKorea

Personalised recommendations