Advertisement

Interfacial reaction issues for lead-free electronic solders

  • C. E. Ho
  • S. C. Yang
  • C. R. Kao
Article

Abstract

The interfacial reactions between Sn-based solders and two common substrate materials, Cu and Ni, are the focuses of this paper. The reactions between Sn-based solders and Cu have been studied for several decades, and currently there are still many un-resolved issues. The reactions between Sn-based solders and Ni are equally challenging. Recent studies further pointed out that Cu and Ni interacted strongly when they were both present in the same solder joint. While this cross-interaction introduces complications, it offers opportunities for designing better solder joints. In this study, the Ni effect on the reactions between solders and Cu is discussed first. The presence of Ni can in fact reduce the growth rate of Cu3Sn. Excessive Cu3Sn growth can lead to the formation of Kirkendall voids, which is a leading factor responsible for poor drop test performance. The Cu effect on the reactions between solders and Ni is then covered in detail. The knowledge gained from the Cu and Ni effects is applied to explain the recently discovered intermetallic massive spalling, a process that can severely weaken a solder joint. It is pointed out that the massive spalling was caused by the shifting of the equilibrium phase as more and more Cu was extracted out of the solder by the growing intermetallic. Lastly, the problems and opportunities brought on by the cross-interaction of Cu and Ni across a solder joint is presented.

Keywords

Solder Joint Ball Grid Array Molten Solder Under Bump Metallurgy Kirkendall Void 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledegments

This work was supported by the National Science Council of R.O.C. through grants NSC-94-2216-E-008-001 and NSC-94-2214-E-008-005. The author (CRK) would like to thanks his students for their contributions to the study of soldering reactions (C. M. Liu, J. Y. Tsai, C. W. Chang, W. C. Luo, W. T. Chen, and L. C. Shiau).

References

  1. 1.
    A. Rahn (ed.), in The Basics of Soldering (John Wiely & Sons, New York, 1993)Google Scholar
  2. 2.
    J.H. Lau (ed.), in Flip Chip Technology (McGraw Hill, New York, 1996)Google Scholar
  3. 3.
    K.N. Tu, K. Zeng, Mater. Sci. Eng. R34, 1 (2001)Google Scholar
  4. 4.
    W.G. Bader, Weld. J. Res. Suppl. 28, 551s (1969)Google Scholar
  5. 5.
    C.J. Thwaites, Electroplat. Met. Finish. 26, 10 (1973)Google Scholar
  6. 6.
    W.A. Mulholland, D.L. Willyard, Weld. J. Res. Suppl. 54, 466s (1974)Google Scholar
  7. 7.
    R. Duckett, M.L. Ackroyd, Electroplat. Met. Finish. 29, 13 (1976)Google Scholar
  8. 8.
    H. Heinzel, K.E. Saeger, Gold Bull. 9, 7 (1976)Google Scholar
  9. 9.
    D.M. Jacobson, G. Jumpston, Gold Bull. 22, 9 (1989)Google Scholar
  10. 10.
    P.A. Kramer, J. Glazer, J.W. Morris, Jr., Metall. Mater. Trans. 25A, 1249 (1994)Google Scholar
  11. 11.
    J. Glazer, Inter. Mater. Rev. 40, 65 (1995)Google Scholar
  12. 12.
    F.G. Yost, Gold Bull. 10, 94 (1977)Google Scholar
  13. 13.
    C.E. Ho, Y.M. Chen, C.R. Kao, J. Electron. Mater. 28, 1231 (1999)Google Scholar
  14. 14.
    C.E. Ho, S.Y. Tsai, C.R. Kao, IEEE Trans. Adv. Packag. 24, 493 (2001)CrossRefGoogle Scholar
  15. 15.
    Z. Huang, P.P. Conway, C. Liu, R.C. Thomson, J. Electron. Mater. 33, 1227 (2004)Google Scholar
  16. 16.
    J.W. Jang, P.G. Kim, K.N. Tu, D.R. Frear, P. Thomson, J. Appl. Phys. 85, 8456 (1999)CrossRefGoogle Scholar
  17. 17.
    P. Liu, Z. Xu, J.K. Shang, Metall. Mater. Trans. 31A, 2857 (2000)Google Scholar
  18. 18.
    H. Matsuki, H. Ibuka, H. Saka, Sci. Technol. Adv. Mater. 3, 261 (2002)CrossRefGoogle Scholar
  19. 19.
    K. Zeng, V. Vuorinen, J.K. Kivilahti, IEEE Trans. Electron. Packag. Manufact. 25, 162 (2002)CrossRefGoogle Scholar
  20. 20.
    S.K. Kang, D.Y. Shih, K. Fogel, P. Lauro, M.J. Yim, G.G. Advocate, Jr., M. Griffin, C. Goldsmith, D.W. Henderson, T.A. Gosselin, D.E. King, J.J. Konrad, A. Sarkhel, K.J. Puttlitz, IEEE Trans. Electron. Packag. Manufact. 25, 155 (2002)CrossRefGoogle Scholar
  21. 21.
    Y.D. Jeon, S. Nieland, A. Ostmann, H. Reichl, K.W. Paik, J. Electron. Mater. 32, 548 (2003)Google Scholar
  22. 22.
    N. Torazawa, S. Arai, Y. Takase, K. Sasaki, H. Saka, Mater. Trans. 44, 1438 (2003)CrossRefGoogle Scholar
  23. 23.
    T. Hiramori, M. Ito, M. Yoshikawa, A. Hirose, K.F. Kobayashi, Mater. Trans. 44, 2375 (2003)CrossRefGoogle Scholar
  24. 24.
    C.W. Hwang, K. Suganuma, M. Kiso, S. Hashimoto, J. Mater. Res. 18, 2540 (2003)Google Scholar
  25. 25.
    C.W. Hwang, K. Suganuma, M. Kiso, S. Hashimoto, J. Electron. Mater. 33, 1200 (2004)Google Scholar
  26. 26.
    M. He, Z. Chen, G. Qi, Acta Mater. 52, 2047 (2004)CrossRefGoogle Scholar
  27. 27.
    J.W. Yoon, S.W. Kim, S.B. Jung, J. Alloys Compd. 385, 192 (2004)CrossRefGoogle Scholar
  28. 28.
    Y.D. Jeon, K.W. Paik, A. Ostmann, H. Reichl, J. Electron. Mater. 34, 80 (2005)Google Scholar
  29. 29.
    T. Laurila, V. Vuorinen, J.K. Kivilahti, Mater. Sci. Eng. R49, 1 (2005)Google Scholar
  30. 30.
    T.T. Mattila, J.K. Kivilahti, J. Electron. Mater. 34, 969 (2005)Google Scholar
  31. 31.
    A. Kumar, M. He, Z. Chen, Surf. Coat. Tech. 198, 283 (2005)CrossRefGoogle Scholar
  32. 32.
    S.T. Kao, J.G. Duh, J. Electron. Mater. 34, 1129 (2005)Google Scholar
  33. 33.
    J.W. Yoon, S.B. Jung, J. Alloys Compd. 396, 122 (2005)CrossRefGoogle Scholar
  34. 34.
    D.G. Kim, J.W. Kim, S.B. Jung, Mater. Sci. Eng. B 121, 204 (2005)CrossRefGoogle Scholar
  35. 35.
    C.Y. Liu, K.N. Tu, T.T. Sheng, C.H. Tung, D.R. Frear, P. Elenius, J. Appl. Phys. 87, 750 (2000)CrossRefGoogle Scholar
  36. 36.
    P.S. Teo, Y.W. Huang, C.H. Tung, M.R. Marks, T.B. Lim, in Proc. of 2000 IEEE Electron. Comp. Tech. Conf. (ECTC), p. 33Google Scholar
  37. 37.
    F. Zhang, M. Li, C.C. Chum, K.N. Tu, J. Mater. Res. 17, 2757 (2002)Google Scholar
  38. 38.
    F. Zhang, M. Li, C.C. Chum, Z.C. Shao, J. Electron. Mater. 32, 123 (2003)Google Scholar
  39. 39.
    M. Abtew, G. Selvaduray, Mater. Sci. Eng. R27, 95 (2000)Google Scholar
  40. 40.
    K. Suganuma, Curr. Opin. Solid State Mater. Sci. 5, 55 (2001)CrossRefGoogle Scholar
  41. 41.
    K. Zeng, K.N. Tu, Mater. Sci. Eng. R38, 55 (2002)Google Scholar
  42. 42.
    K.N. Tu, A.M. Gusak, M. Li, J. Appl. Phys. 93, 1335 (2003)CrossRefGoogle Scholar
  43. 43.
    C.M.L. Wu, D.Q. Yu, C.M.T. Law, L. Wang, Mater. Sci. Eng. R44, 1 (2004)Google Scholar
  44. 44.
    S.K. Kang, P.A. Lauro, D.-Y. Shih, D.W. Henderson, K.J. Puttlitz, IBM J. Res. & Dev. 49, 607 (2005)CrossRefGoogle Scholar
  45. 45.
    S. Ahat, M. Sheng, L. Luo, J. Electron. Mater. 30, 1317 (2001)Google Scholar
  46. 46.
    T.-C. Chiu, K. Zeng, R. Stierman, D. Edwards, K. Ano, in Proceedings of 2004 IEEE Electron. Comp. Tech. Conf. (ECTC), p. 1256Google Scholar
  47. 47.
    M. Date, T. Shoji, M. Fujiyoshi, K. Sato, K. N. Tu, Proceedings of 2004 IEEE Electron. Comp. Tech. Conf. (ECTC), p. 668Google Scholar
  48. 48.
    P.T. Vianco, J.A. Rejent, P.F. Hlava, J. Electron. Mater. 33, 991 (2004)Google Scholar
  49. 49.
    P. Borgesen, D. W. Henderson, Report of Universal Instruments (http://www.uci.com), (2004)Google Scholar
  50. 50.
    K. Zeng, R. Stierman, T.-C. Chiu, D. Edwards, K. Ano, K.N. Tu, J. Appl. Phys. 97, 024508 (2005)Google Scholar
  51. 51.
    Z. Mei, M. Ahmad, M. Hu, G. Ramakrishna, in Proceedings of 2005 IEEE Electron. Comp. Tech. Conf. (ECTC), p. 415Google Scholar
  52. 52.
    M. Oh, Doctor Dissertation, Lehigh University, (1994)Google Scholar
  53. 53.
    S.W. Chen, S.H. Wu, S.W. Lee, J. Electron. Mater. 32, 1188 (2003)Google Scholar
  54. 54.
    J.Y. Tsai, Y.C. Hu, C.M. Tsai, C.R. Kao, J. Electron. Mater. 32, 1203 (2003)Google Scholar
  55. 55.
    C.M. Chung, P.C. Shih, K.L. Lin, J. Electron. Mater. 33, 1 (2004)Google Scholar
  56. 56.
    L. Garner, S. Sane, D. Suh, T. Byrne, A. Dani, T. Martin, M. Mello, M. Patel, R. Williams, Intel Technol. J. 9, 297 (2005)Google Scholar
  57. 57.
    I.E. Anderson, J.L. Harringa, J. Electron. Mater. 35, 94 (2006)Google Scholar
  58. 58.
    T.B. Massalski (ed.), in Binary Alloy Phase Diagrams (ASM International, Metal Park, OH, 1990) p. 1481Google Scholar
  59. 59.
    P. Nash, A. Nash, Bull. Alloy Phase Diag. 6, 350 (1985)Google Scholar
  60. 60.
    E.K. Ohriner, Weld. J. Res. Suppl. 7, 191 (1987)Google Scholar
  61. 61.
    S. Bader, W. Gust, H. Hieber, Acta. Metall. Mater. 43, 329 (1995)Google Scholar
  62. 62.
    D. Gur, M. Bamberger, Acta Mater. 46, 4917 (1998)CrossRefGoogle Scholar
  63. 63.
    J.A. van Beek, S.A. Stolk, F.J. J. van Loo, Z. Metallkde 73, 441 (1982)Google Scholar
  64. 64.
    C.M. Liu, M.S. Thesis, National Central University, Taiwan (2000)Google Scholar
  65. 65.
    K.-W. Moon, W.J. Boettinger, U.R. Kattner, F.S. Biancaniello, C.A. Handwerker, J. Electron. Mater. 29, 1122 (2000)Google Scholar
  66. 66.
    NEMI (National Electronics Manufacturing Initiative)-Workshop on Modeling and Data Needs for Lead-Free solders, (New Orleans, LA, February 15th 2001)Google Scholar
  67. 67.
    Soldertec-ITRI, Lead-free alloys-the way forward, October 1999 (http://www.lead-free.org)Google Scholar
  68. 68.
    IDEALS (International Dental Ethics and Law Society), Improved design life and environmentally aware manufacturing of electronics assemblies by lead-free soldering, Brite-Euram contract BRPR-CT96-0140, project number BE95-1994 (1994–1998)Google Scholar
  69. 69.
    JEITA (Japan Electronics and Information Technology Industries Association), Lead-Free Roadmap 2002, v 2.1, (2002)Google Scholar
  70. 70.
    K.F. Seeling, D.G. Lockard, United States Patent, Patent No. 5352407, (Oct 1994)Google Scholar
  71. 71.
    IPC Roadmap, Assembly of Lead-Free Electronics, 4th draft, IPC, (Northbrook, IL, June 2000)Google Scholar
  72. 72.
    L.S. Bai, Taiwan Printed Circuit Association (TPCA) Magazine 31, 21 (2006)Google Scholar
  73. 73.
    C.E. Ho, Y.L. Lin, C.R. Kao, Chem. Mater. 14, 949 (2002)CrossRefGoogle Scholar
  74. 74.
    J.W. Jang, D.R. Frear, T.Y. Lee, K.N. Tu, J. Appl. Phys. 88, 6359 (2000)CrossRefGoogle Scholar
  75. 75.
    C.E. Ho, R.Y. Tsai, Y.L. Lin, C.R. Kao, J. Electron. Mater. 31, 584 (2002)Google Scholar
  76. 76.
    S.M. Hong, C.S. Kang, J.P. Jung, IEEE Trans. Adv. Packag. 27, 90 (2004)CrossRefGoogle Scholar
  77. 77.
    G.Y. Jang, J.G. Duh, J. Electron. Mater. 34, 68 (2005)Google Scholar
  78. 78.
    C.M. Liu, C.E. Ho, W.T. Chen, C.R. Kao, J. Electron. Mater. 30, 1152 (2001)Google Scholar
  79. 79.
    M. Li, K.Y. Lee, D.R. Olsen, W.T. Chen, B.T. C. Tan, S. Mhaisalkar, IEEE Trans. Electron. Packag. 25, 185 (2002)CrossRefGoogle Scholar
  80. 80.
    S.K. Kang, W.K. Choi, M.J. Yim, D.Y. Shih, J. Electron. Mater. 31, 1292 (2002)Google Scholar
  81. 81.
    L.C. Shiau, C.E. Ho, C.R. Kao, Solder. Surf. Mount Tech. 14/3, 25 (2002)Google Scholar
  82. 82.
    M.O. Alam, Y.C. Chan, K.N. Tu, Chem. Master. 15, 4340 (2003)CrossRefGoogle Scholar
  83. 83.
    K.Y. Lee, M. Li, J. Electron. Mater. 32, 906 (2003)Google Scholar
  84. 84.
    C.B. Lee, J.W. Yoon, S.J. Suh, S.B. Jung, C.W. Yang, C.C. Shur, Y.E. Shin, J. Mater. Sci.: Mater. Electron. 14, 487 (2003)CrossRefGoogle Scholar
  85. 85.
    A. Sharif, M.N. Islam, Y.C. Chan, Mater. Sci. Eng. B 113, 184 (2004)CrossRefGoogle Scholar
  86. 86.
    D.Q. Yu, C.M. L. Wu, D.P. He, N. Zhao, L. Wang, J.K.L. Lai, J. Mater. Res. 20, 2205 (2005)CrossRefGoogle Scholar
  87. 87.
    W.T. Chen, C.E. Ho, C.R. Kao, J. Mater. Res. 17, 263 (2002)Google Scholar
  88. 88.
    W.C. Luo, C.E. Ho, J.Y. Tsai, Y.L. Lin, C.R. Kao, Mater. Sci. Eng. A 396, 385 (2005)CrossRefGoogle Scholar
  89. 89.
    C.E. Ho, W.C. Luo, S.C. Yang, C.R. Kao, in Proceedings of IMAPS Taiwan 2005 International Technical Symposium (Taipei, June 2005), p. 98Google Scholar
  90. 90.
    C.E. Ho, Y.W. Lin, S.C. Yang, C.R. Kao, in Proceedings of the 10th International Symposium on Advanced Packaging Materials: Processes, Properties and Interface, IEEE/CPMT (Irvine, March 2005), p. 39Google Scholar
  91. 91.
    C.E. Ho, Y.W. Lin, S.C. Yang, C.R. Kao, D. S. Jiang, J. Electron. Mater. 35, 1017 (2006)Google Scholar
  92. 92.
    M.O. Alam, Y.C. Chan, K.N. Tu, J.K. Kivilahti, Chem. Mater. 17, 2223 (2005)CrossRefGoogle Scholar
  93. 93.
    K.S. Kim, S.H. Huh, K. Suganuma, J. Alloys Compd. 352, 226 (2003)CrossRefGoogle Scholar
  94. 94.
    J.S. Ha, T.S. Oh, K.N. Tu, J. Mater. Res. 18, 2109 (2003)Google Scholar
  95. 95.
    C.H. Wang, S.W. Chen, Acta Mater. 54, 247 (2006)CrossRefGoogle Scholar
  96. 96.
    S.K. Kang, W.K. Choi, D.Y. Shih, P. Lauro, D.W. Henderson, T. Gosselin, D.N. Leonard, in Proceedings of 2002 IEEE Electron. Comp. Tech. Conf. (ECTC), p. 146Google Scholar
  97. 97.
    Y. Zheng, C. Hillman, P. McCluskey, in Proceedings of 2002 IEEE Electron. Comp. Tech. Conf. (ECTC), p. 1226Google Scholar
  98. 98.
    M.D. Cheng, S.Y. Chang, S.F. Yen, T.H. Chuang, J. Electron. Mater. 33, 171 (2004)Google Scholar
  99. 99.
    J.H. L. Pang, T.H. Low, B.S. Xiong, X. Luhua, C.C. Neo, Thin Sol. Films, 462463, 370 (2004)CrossRefGoogle Scholar
  100. 100.
    J.W. Yoon, S.W. Kim, J.M. Koo, D.G. Kim, S.B. Jung, J. Electron. Mater. 33, 1190 (2004)Google Scholar
  101. 101.
    J.W. Yoon, S.W. Kim, S.B. Jung, J. Alloys Compd. 391, 82 (2005)CrossRefGoogle Scholar
  102. 102.
    C.B. Lee, S.B. Jung, Y.E. Shin, C.C. Shur, Mater. Trans. 43, 1858 (2002)CrossRefGoogle Scholar
  103. 103.
    A. Zribi, A. Clark, L. Zavalij, P. Borgesen, E.J. Cotts, J. Electron. Mater. 30, 1157 (2001)Google Scholar
  104. 104.
    G. Ghosh, Acta Mater. 49, 2609 (2001)CrossRefGoogle Scholar
  105. 105.
    G. Ghosh, J. Electron. Mater. 33, 229 (2004)Google Scholar
  106. 106.
    C.E. Ho, Doctor Dissertation, National Central University, Taiwan, (2002)Google Scholar
  107. 107.
    C.E. Ho, L.C. Shiau, C.R. Kao, J. Electron. Mater. 31, 1264 (2002)Google Scholar
  108. 108.
    L.P. Lehman, S.N. Athavale, T.Z. Fullem, A.C. Giamis, R.K. Kinyanjui, M. Lowenstein, K. Mather, R. Patel, D. Rae, J.Wang, Y. Xing, L. Zavalij, P. Borgesen, E.J. Cotts, J. Electron. Mater. 33, 1429 (2004)Google Scholar
  109. 109.
    D.W. Henderson, T. Gosselin, A. Sarkhel, S.K. Kang, W.K. Choi, D.Y. Shih, C. Goldsmith, K. Puttlitz, J. Mater. Res. 17, 2775 (2002)Google Scholar
  110. 110.
    S.K. Kang, W.K. Choi, D.Y. Shih, D.W. Henderson, T. Gosselin, A. Sarkhel, C. Goldsmith, K. Puttlitz, in Proceedings of 2003 IEEE Electron. Comp. Tech. Conf. (ECTC), p. 64Google Scholar
  111. 111.
    S.K. Kang, W.K. Choi, D.Y. Shih, D.W. Henderson, T. Gosselin, A. Sarkhel, C. Goldsmith, K. Puttlitz, J. Minerals Metals Mater. Soc. 55, 61 (2003)Google Scholar
  112. 112.
    S. Terashima, Y. Kariya, T. Hosoi, M. Tanaka, J. Electron. Mater. 32, 1527 (2003)Google Scholar
  113. 113.
    C.H. Lin, S.W. Chen, C.H. Wang, J. Electron. Mater. 31, 907 (2002)Google Scholar
  114. 114.
    C.Y. Li, J.G. Duh, J. Mater. Res. 20, 3118 (2005)CrossRefGoogle Scholar
  115. 115.
    P. Oberndorff, Doctoral Dissertation, Technical University of Eindhoven, (2001)Google Scholar
  116. 116.
    G.Z. Pan, A.A. Liu, H.K. Kim, K.N. Tu, P.A. Totta, Appl. Phys. Lett. 71, 2946 (1997)CrossRefGoogle Scholar
  117. 117.
    C.R. Kao, C.E. Ho, L.C. Shiau, Solder Point with Low Speed of Consuming Nickel, R.O.C. patent, patent No. 181410, (2003)Google Scholar
  118. 118.
    S.J. Wang, C.Y. Liu, J. Electron. Mater. 32, 1303 (2003)Google Scholar
  119. 119.
    T.L. Shao, T.S. Chen, Y.M. Huang, C. Chen, J. Mater. Res. 19, 3654 (2004)CrossRefGoogle Scholar
  120. 120.
    C.M. Tsai, W.C. Luo, C.W. Chang, Y.C. Shieh, C.R. Kao, J. Electron. Mater. 33, 1424 (2004)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.Department of Chemical Engineering & Materials ScienceMichigan State UniversityEast LansingUSA
  2. 2.Department of Chemical & Materials EngineeringNational Central UniversityJhongli CityTaiwan
  3. 3.Department of Materials Science & EngineeringNational Taiwan UniversityTaipeiTaiwan

Personalised recommendations