Advertisement

Thermodynamics and phase diagrams of lead-free solder materials

  • H. Ipser
  • H. Flandorfer
  • Ch. Luef
  • C. Schmetterer
  • U. Saeed
Article

Abstract

Many of the existing and most promising lead-free solders for electronics contain tin or tin and indium as a low melting base alloy with small additions of silver and/or copper. Layers of nickel or palladium are frequently used contact materials. This makes the two quaternary systems Ag–Cu–Ni–Sn and Ag–In–Pd–Sn of considerable importance for the understanding of the processes that occur during soldering and during operation of the soldered devices. The present review gives a brief survey on experimental thermodynamic and phase diagram research in our laboratory. Thermodynamic data were obtained by calorimetric measurements, whereas phase equilibria were determined by X-ray diffraction, thermal analyses and metallographic methods (optical and electron microscopy). Enthalpies of mixing for liquid alloys are reported for the binary systems Ag–Sn, Cu–Sn, Ni–Sn, In–Sn, Pd–Sn, and Ag–Ni, the ternary systems Ag–Cu–Sn, Cu–Ni–Sn, Ag–Ni–Sn, Ag–Pd–Sn, In–Pd–Sn, and Ag–In–Sn, and the two quaternary systems themselves, i.e. Ag–Cu–Ni–Sn, and Ag–In–Pd–Sn. Enthalpies of formation are given for solid intermetallic compounds in the three systems Ag–Sn, Cu–Sn, and Ni–Sn. Phase equilibria are presented for binary Ni–Sn and ternary Ag–Ni–Sn, Ag–In–Pd and In–Pd–Sn. In addition, enthalpies of mixing of liquid alloys are also reported for the two ternary systems Bi–Cu–Sn and Bi–Sn–Zn which are of interest for Bi–Sn and Sn–Zn solders.

Keywords

Solder Joint Isothermal Section Ni3Sn2 Liquid Alloy Quaternary System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors acknowledge the financial support of the Austrian “Fonds zur Förderung der wissenschaftlichen Forschung (FWF)”, projects No. P-15620, P-16495 and P-17346. The financial support of the Hochschuljubilaeumsstiftung der Stadt Wien (Project No. H-812/2005) is also gratefully acknowledged. This research is a contribution to the European COST Action 531 on “Lead-free Solder Materials”.

References

  1. 1.
    A. Rahn, in The Basics of Soldering (John Wiley &Sons Inc., 1993), p. 1Google Scholar
  2. 2.
    Y.A. Chang, S. Chen, F. Zhang, X. Yan, F. Xie, R. Schmid-Fetzer, W.A. Oates, Progr. Mater. Sci. 49, 313 (2004)CrossRefGoogle Scholar
  3. 3.
    A.T. Dinsdale, A. Watson, A. Kroupa, A. Zemanova, J. Vrestal, J. Vizdal, COST 531 Thermodynamic Database, Version 2.0 (2006) (http://www.slihot.co.uk/COST531/td_database.htm)Google Scholar
  4. 4.
    R. Hultgren, P.D. Desai, D. Hawkins, M. Gleiser, K. Kelley, in “Selected Values of the thermodynamic properties of binary alloys” (AMS Metals Park, Ohio, 1971)Google Scholar
  5. 5.
    P. Nash, A. Nash, Bull. Alloy Phase Diagrams 6, 350 (1985)Google Scholar
  6. 6.
    C. Luef, H. Flandorfer, H. Ipser, Thermochim. Acta 417, 47 (2004)CrossRefGoogle Scholar
  7. 7.
    U. Saeed, H. Flandorfer, H. Ipser, J. Mater. Res. 21, 1294 (2006)CrossRefGoogle Scholar
  8. 8.
    C. Luef, H. Flandorfer, H. Ipser, Z. Metallkde. 95, 151 (2004)Google Scholar
  9. 9.
    C. Luef, A. Paul, H. Flandorfer, A. Kodentsov, H. Ipser, J. Alloys Comp. 391, 67 (2005)CrossRefGoogle Scholar
  10. 10.
    C. Luef, H. Flandorfer, A. Paul, A. Kodentsov, H. Ipser, Intermetallics 13, 1207 (2005)CrossRefGoogle Scholar
  11. 11.
    A. Zemanova, A. Kroupa, J. Vrestal, O. Semenova, K. Chandrasekaran, K.W. Richter, H. Ipser, Monatsh. Chem. 136, 1931 (2005)CrossRefGoogle Scholar
  12. 12.
    A. Zemanova, O. Semenova, A. Kroupa, J. Vrestal, K. Chandrasekaran, K.W. Richter, H. Ipser, Intermetallics, 14, (2006), in pressGoogle Scholar
  13. 13.
    C. Luef, A. Paul, J. Vizdal, A. Kroupa, A. Kodentsov, H. Ipser, Monatsh. Chem. 137, 381 (2006)CrossRefGoogle Scholar
  14. 14.
    C. Luef, H. Flandorfer, H. Ipser, Metall. Mater. Trans. A 36A, 1273 (2005)Google Scholar
  15. 15.
    I. Karakaya, W.T. Thompson, Bull. Alloy Phase Diagrams 8, 340 (1987)Google Scholar
  16. 16.
    P.-Y. Chevalier, Thermochim. Acta 136, 45 (1988)CrossRefGoogle Scholar
  17. 17.
    Y. Xie, Z. Qiao, J. Phase Equil. 17, 208 (1996)Google Scholar
  18. 18.
    G.-V. Raynor, in Annotated Equilibrium Diagram Series, No. 2 (The Institute of Metals, London, 1944)Google Scholar
  19. 19.
    N. Saunders, A.P. Miodownik, Bull. Alloy Phase Diagrams 11, 278 (1990)Google Scholar
  20. 20.
    J.-H. Shim, C.-S. Oh, Z. Metallkde. 87, 205 (1996)Google Scholar
  21. 21.
    R. Haddad, M. Gaune-Escard, J.-P. Bros, A. Ranninger-Havlicek, E. Hayer, K.L. Komarek, J. Alloys Comp. 247, 82 (1997)CrossRefGoogle Scholar
  22. 22.
    P. Nash, H. Choo, R.B. Schwarz, J. Mat. Sci. 33, 4949 (1998)CrossRefGoogle Scholar
  23. 23.
    G. Ghosh, Metall. Mater. Trans. 30A, 1481 (1999)Google Scholar
  24. 24.
    A. Leineweber, M. Ellner, E.J. Mittemeijer, J. Solid State Chem. 159, 191 (2001)CrossRefGoogle Scholar
  25. 25.
    A. Leineweber, O. Oeckler, U. Zachwieja, J. Solid State Chem. 177, 936 (2004)CrossRefGoogle Scholar
  26. 26.
    A. Leineweber, J. Solid State Chem. 177, 1197 (2004)CrossRefGoogle Scholar
  27. 27.
    J. Niemelä, G. Effenberg, K. Hack, P. Spencer, CALPHAD 10, 77 (1986)CrossRefGoogle Scholar
  28. 28.
    O. Teppo, J. Niemelä, P. Taskinen, Thermochim. Acta 173, 137 (1990)CrossRefGoogle Scholar
  29. 29.
    S.-W. Chen, H.-F. Hsu, Acta Materialia 52, 2541 (2004)CrossRefGoogle Scholar
  30. 30.
    G. Ghosh, J. Electron. Mater. 29, 1182 (2000)Google Scholar
  31. 31.
    S.-W. Chen, H.-F. Hsu, Ch.-W. Lin, J. Mater. Res. 19, 2267 (2004)Google Scholar
  32. 32.
    S.-W. Chen, C.-A. Chang, J. Electr. Mat. 33, 1071 (2004)Google Scholar
  33. 33.
    C.-A. Chang, S.-W. Chen, C.-N. Chiu, Y.-C. Huang, J. Electr. Mat. 34, 1135 (2005)Google Scholar
  34. 34.
    H. Flandorfer, J. Alloys Comp. 336, 176 (2002)CrossRefGoogle Scholar
  35. 35.
    I. Ansara, N. Dupin, in COST 507 Thermochemical database for light metal alloys, vol. 2 (European Commission DG XII, Luxembourg, 1998) p. 1Google Scholar
  36. 36.
    N. Saunders, A.P. Miodownik, in “CALPHAD (Calculation of Phase Diagrams): A Comprehensive Guide” (Pergamon Press, Oxford, UK, 1998)Google Scholar
  37. 37.
    J.M. Fiorani, C. Naguet, J. Hertz, A. Bourkba, L. Bouirden, Z. Metallkde. 88, 711 (1997)Google Scholar
  38. 38.
    F. Sommer, Z. Metallkde. 73, 72 (1982)Google Scholar
  39. 39.
    J.-F. Deneuville, C. Chatillon-Colinet, J.-C. Mathieu, E. Bonnier, J. Chim. Phys. 73, 273 (1976)Google Scholar
  40. 40.
    Y. Waseda, in The structure of non-crystalline materials (McGraw-Hill Inc., 1980), p. 56Google Scholar
  41. 41.
    O.J. Kleppa. J. Phys. Chem. 60, 852 (1956)CrossRefGoogle Scholar
  42. 42.
    G.H. Lauri, A.W.H. Morris, J.N. Pratt, Trans. Met. Soc. 236, 1390 (1966)Google Scholar
  43. 43.
    O.J. Kleppa, Acta Metall. 3, 255 (1955)CrossRefGoogle Scholar
  44. 44.
    J.B. Cohen, J.S Leach, M.B Bever, J. Met. 6, 1257 (1954)Google Scholar
  45. 45.
    A. Gangulee, G.C. Das, M.B. Bever, Metall. Trans. 4, 2063 (1973)Google Scholar
  46. 46.
    B. Predel, W. Vogelbein, Thermochim. Acta 30, 201 (1979)CrossRefGoogle Scholar
  47. 47.
    F. Korber, W. Oelsen, Mitt. K. Wilhem Inst. Eisenforsch. Düsseldorf 19, 209 (1937)Google Scholar
  48. 48.
    H. Dannoehl, H.L. Lukas, Z. Metallkde. 65, 642 (1974)Google Scholar
  49. 49.
    A. Zemanova, J. Vrestal, A. Kroupa, Research in progress Masaryk University Bruno (2005)Google Scholar
  50. 50.
    C. Colinet, A. Pasturel, Z. Metallkde. 89, 863 (1998)Google Scholar
  51. 51.
    P. Villars, A. Prince, H. Okamoto, in Handbook of Ternary Alloy Phase Diagrams (ASM International, Metals Park, Ohio, 1995)Google Scholar
  52. 52.
    M.J. Pool, I. Arpshofen, B. Predel, E. Schultheiss, Z. Metallkde. 70, 656 (1979)Google Scholar
  53. 53.
    H.-T. Luo, S. W. Chen, J. Mater. Sci. 31, 5059 (1996)CrossRefGoogle Scholar
  54. 54.
    T.B. Massalski, J.L. Murray, L.H. Bennett, H. Baker, in “Binary Alloy Phase Diagrams” (ASM, Materials Park, Ohio, 1990)Google Scholar
  55. 55.
    I. Kosovinc, M. El-Boragy, K. Schubert, Metall 26, 917 (1972)Google Scholar
  56. 56.
    I. Kosovinc, T. Grgasovic, Rud.-Metal. Zborn. 1, 71 (1972)Google Scholar
  57. 57.
    E. Hayer, Calorimetrie Analyse Thermique 26, 262 (1995)Google Scholar
  58. 58.
    S.D. Muzaffar, J. Chem. Soc. 123, 2341 (1923)Google Scholar
  59. 59.
    D.V. Malakhov, X.J. Liu, I. Ohnuma, K. Ishida, J. Phase Equil. 21, 514 (2000)CrossRefGoogle Scholar
  60. 60.
    N. Moelans, K.C. Hari Kumar, P. Wollants, J. Alloys Comp. 360, 98 (2003)CrossRefGoogle Scholar
  61. 61.
    W. Biltz, W. Wagner, H. Pieper, W. Holverscheit, Z. Anorg. Chem. 134, 25 (1924)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • H. Ipser
    • 1
  • H. Flandorfer
    • 1
  • Ch. Luef
    • 1
  • C. Schmetterer
    • 1
  • U. Saeed
    • 1
  1. 1.Institut für Anorganische Chemie/MaterialchemieUniversität WienWienAustria

Personalised recommendations