Fluorescence and infrared spectroscopy of electrochemically self assembled ZnO nanowires: evidence of the quantum confined Stark effect

  • S. Ramanathan
  • S. Patibandla
  • S. BandyopadhyayEmail author
  • J. D. Edwards
  • J. Anderson


We report room temperature fluorescence (FL) and infrared absorption (IR) spectra of spatially ordered two-dimensional arrays of vertically standing ZnO nanowires. The wires are produced by selective electrodeposition of Zn in 10-, 25- and 50-nm pores of a porous anodic alumina film, followed by chemical oxidation. Wires of different diameters show distinctly different FL emission characteristics associated with either deep level traps, or exciton recombination. The intensity of the peak caused by exciton recombination is larger than that caused by deep level traps, which is unusual in nanostructures, and attests to the high structural purity. We also see an anomalous red-shift in the FL emission spectrum which appears to be evidence of quantum confined Stark shift caused by built-in electric fields in the alumina template. The IR absorption spectra are mostly featureless and show no significant peaks indicating the absence of shallow level traps.


Alumina Template Ionize Oxygen Vacancy Exciton Recombination High Frequency Peak Anodic Alumina Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors are indebted to Dr. Feng Yun for help with SEM imaging.


  1. 1.
    E.M. Wong, P.C. Searson, Appl. Phys. Lett. 74, 2939 (1999)CrossRefGoogle Scholar
  2. 2.
    B. Sang, M. Konagai, Jpn. J. Appl. Phys. 35(Pt. 2), L602 (1996)CrossRefGoogle Scholar
  3. 3.
    H. Nanto, T. Minami, S.J. Takata, J. Appl. Phys. 60, 482 (1986)CrossRefGoogle Scholar
  4. 4.
    A.V. Nurmikko, R.L. Gunshor, Solid St. Commun. 92, 113 (1994)CrossRefGoogle Scholar
  5. 5.
    X.-L. Guo, J.-H. Choi, H. Tabata, T. Kawai, Jpn. J. Appl. Phys. 40(Pt. 2), L177 (2001)CrossRefGoogle Scholar
  6. 6.
    Y. Li, G.W. Meng, L.D. Zhang, F. Phillipp, Appl. Phys. Lett. 76, 2011 (2000)CrossRefGoogle Scholar
  7. 7.
    Seu Yi Li, Chia Ying Lee, Pamg Lin, Tseung Yuen Tseng, J. Vac. Sci. Technol. B 24, 147 (2006)CrossRefGoogle Scholar
  8. 8.
    Shingo Hirano, Nobuo Takeuchi, Shu Shimada, Kyosuke Masuya, Katsuhiko Ibe, Hideo Tsunakawa, Makut Kuwabara, J. Appl. Phys. 98, 094305 (2005)CrossRefGoogle Scholar
  9. 9.
    Yanfeng Zhang, Richard E. Russo, Samuel S. Mao, Appl. Phys. Lett., 87, 043106 (2005)CrossRefGoogle Scholar
  10. 10.
    Zhiyong Fan, Jia G. Liu, Appl. Phys. Lett. 86, 123510 (2005)CrossRefGoogle Scholar
  11. 11.
    Zhiyong Fan, Pai-chun Chang, Jia G. Lu, Erich C. Walter, Reginald M. Penner, Chien-hung Lin, Henry P. Lee, Appl. Phys. Lett. 85, 6128 (2004)CrossRefGoogle Scholar
  12. 12.
    Y.W. Heo, L.C. Tien, Y. Kwon, D.P. Norton, S.J. Pearton, B.S. Kang, F. Ren, Appl. Phys. Lett. 85, 2274 (2004)CrossRefGoogle Scholar
  13. 13.
    S. Bandyopadhyay et al., Nanotechnology 7, 360 (1996)CrossRefGoogle Scholar
  14. 14.
    C.-G. Stefanita, S. Pramanik, A. Banerjee, M. Sievert, A.A. Baski, S. Bandyopadhyay, J. Crystl. Growth 268, 342 (2004)CrossRefGoogle Scholar
  15. 15.
    H. Masuda, M. Satoh, Jpn. J. Appl. Phys. 35(Pt. 1), 1126 (1996)Google Scholar
  16. 16.
    Qingtao Wang, Guanzhong Wang, Bo Xu, Jiansheng Jie, Xinhai Han, Gongpu Li, Qingshan Li, J. G. Hou, Mater. Lett. 59, 1378 (2005)CrossRefGoogle Scholar
  17. 17.
    H. Bethke, H. Pan, B.W. Wessels, Appl. Phys. Lett. 52, 138 (1988)CrossRefGoogle Scholar
  18. 18.
    Yang Zhang, Bixia Lin, Xiankai Sun, Zhuxi Fu, Appl. Phys. Lett. 86, 13190 (2005)Google Scholar
  19. 19.
    Z.W. Liu, C.K. Ong, T. Yu, Z.X. Shen, Appl. Phys. Lett. 88, 053110 (2006)CrossRefGoogle Scholar
  20. 20.
    K. Vanheusden, W.L. Warren, C.H. Seager, D.K. Tallant, J.A. Voigt, B.E. Gnade, J. Appl. Phys. 79, 7983 (1996)CrossRefGoogle Scholar
  21. 21.
    Y. Yamamoto, N. Baba, S. Tajima, Nature (London) 289, 572 (1981)CrossRefGoogle Scholar
  22. 22.
    Y. Du, W.L. Cai, C.M. Mo, J. Chen, L.D. Zhang, X.G. Zhu, Appl. Phys. Lett. 74, 2951 (1999)CrossRefGoogle Scholar
  23. 23.
    Y. Wang et al., to J. Nanosci. Nanotech (in press).Google Scholar
  24. 24.
    S. Sarkar et al., (pre-print)Google Scholar
  25. 25.
    D.A.B. Miller, D.S. Chemla, T.C. Damen, A.C. Gossard, W. Wiegmann, T.H. Wood, C.S. Burrus, Phys. Rev. Lett. 53, 2173 (1984)CrossRefGoogle Scholar
  26. 26.
    D.A.B. Miller, D.S. Chemla, S. Schmitt-Rink, Phys. Rev. B 33, 6976 (1986)CrossRefGoogle Scholar
  27. 27.
    J.S. Jie, G.Z. Wang, Q.T. Wang, Y.M. Chen, X.H. Han, X.P. Wang, J.G. Hou, J. Phys. Chem. B 108, 11976 (2004)CrossRefGoogle Scholar
  28. 28.
    J.C. Johnson, K.P. Knutsen, H.Q. Yan, M. Law, Y.F. Zhang, P.D. Wang, R.J. Saykally, Nano Lett. 4, 197 (2004)CrossRefGoogle Scholar
  29. 29.
    S.M. Sze, Physics of Semiconductor Devices, 2nd edn. (John Wiley & Sons, New York, 1981)Google Scholar
  30. 30.
    A. Balandin, K.L. Wang, N. Kouklin, S. Bandyopadhyay, Appl. Phys. Lett. 76, 137 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • S. Ramanathan
    • 1
  • S. Patibandla
    • 1
  • S. Bandyopadhyay
    • 1
    Email author
  • J. D. Edwards
    • 2
  • J. Anderson
    • 2
  1. 1.Department of Electrical and Computer EngineeringVirginia Commonwealth UniversityRichmondUSA
  2. 2.US Army Engineer Research and Development CenterAlexandriaUSA

Personalised recommendations