Ferromagnetism of ZnO and GaN: A Review

  • C. Liu
  • F. Yun
  • H. Morkoç


The observation of ferromagnetism in magnetic ion doped II–VI diluted magnetic semiconductors (DMSs) and oxides, and later in (Ga,Mn)As materials has inspired a great deal of research interest in a field dubbed “spintronics” of late, which could pave the way to exploit spin in addition to charge in semiconductor devices. The main challenge for practical application of the DMS materials is the attainment of a Curie temperature at or preferably above room temperature to be compatible with junction temperatures. Among the studies of transition-metal doped conventional III–V and II–VI semiconductors, transition-metal-doped ZnO and GaN became the most extensively studied topical materials since the prediction by Dietl et al., based on mean field theory, as promising candidates to realize a diluted magnetic material with Curie temperature above room temperature. The underlying assumptions, however, such as transition metal concentrations in excess of 5% and hole concentrations of about 1020 cm−3, have not gotten as much attention. The particular predictions are predicated on the assumption that hole mediated exchange interaction is responsible for magnetic ordering. Among the additional advantages of ZnO-and GaN-based DMSs are that they can be readily incorporated in the existing semiconductor heterostructure systems, where a number of optical and electronic devices have been realized, thus allowing the exploration of the underlying physics and applications based on previously unavailable combinations of quantum structures and magnetism in semiconductors. This review focuses primarily on the recent progress in the theoretical and experimental studies of ZnO- and GaN-based DMSs. One of the desirable outcomes is to obtain carrier mediated magnetism, so that the magnetic properties can be manipulated by charge control, for example through external electrical voltage. We shall first describe the basic theories forwarded for the mechanisms producing ferromagnetic behavior in DMS materials, and then review the theoretical results dealing with ZnO and GaN. The rest of the review is devoted to the structural, optical, and magnetic properties of ZnO- and GaN-based DMS materials reported in the literature. A critical review of the question concerning the origin of ferromagnetism in diluted magnetic semiconductors is given. In a similar vein, limitations and problems for identifying novel ferromagnetic DMS are briefly discussed, followed by challenges and a few examples of potential devices.


  1. 1.
    J. K. FURDYNA, J. Appl. Phys. 64 (1988) R29.CrossRefGoogle Scholar
  2. 2.
    H. OHNO, Science 281 (1998) 951.CrossRefGoogle Scholar
  3. 3.
    T. DIETL, H. OHNO, F. MATSUKURA, J. CIBERT and D. FERRAND, ibid. 287 (2000) 1019.CrossRefGoogle Scholar
  4. 4.
    K. SATO and H. KATAYAMA-YOSHIDA, Jpn. J. Appl. Phys. 40 (2001) L334.Google Scholar
  5. 5.
    G. P. DAS, B. K. RAO and P. JENA, Phys. Rev. B 69 (2004) 214422.Google Scholar
  6. 6.
    N. THEODOROPOULOU, A. F. HEBARD, M. E. OVERBERG, C. R. ABERNATHY, S. J. PEARTON, S. N. G. CHU and R. G. WILSON, Appl. Phys. Lett. 78 (2001) 3475.CrossRefGoogle Scholar
  7. 7.
    G. T. THALER, M. E. OVERBERG, B. GILA, R. FRAZIER, C. R. ABERNATHY, S. J. PEARTON, J. S. LEE, S. Y. LEE, Y. D. PARK, Z. G. KHIM, J. KIM and F. REN, ibid. 80 (2002) 3964.CrossRefGoogle Scholar
  8. 8.
    M. E. OVERBERG, C. R. ABERNATHY, S. J. PEARTON, N. A. THEODOROPOULOU, K. T. MCCARTHY and A. F. HEBARD, ibid. 79 (2001) 1312.Google Scholar
  9. 9.
    K. H. KIM, K. J. LEE, D. J. KIM, H. J. KIM, Y. E. IHM, D. DJAYAPRAWIRA, M. TAKAHASHI, C. S. KIM, C. G. KIM and S. H. YOO, ibid. 82 (2003) 1775.Google Scholar
  10. 10.
    M. C. PARK, K. S. KUH, J. M. MYOUNG, J. M. LEE, J. Y. CHANG, K. I. LEE, S. H. HAN and W. Y. LEE, Solid State Commun. 124 (2002) 11.CrossRefGoogle Scholar
  11. 11.
    J. Y. CHANG, G. H. KIM, J. M. LEE, S. H. HAN, W. Y. LEE, M. H. HAN, K. S. HUH and J. M. MYOUNG, J. Appl. Phys. 93 (2003) 7858.Google Scholar
  12. 12.
    S. SONODA, S. SHIMIZU, T. SASAKI, Y. YAMAMOTO and H. HORI, J. Cryst. Growth 237 (2002) 1358.CrossRefGoogle Scholar
  13. 13.
    D. S. HAN, J. PARK, K. W. RHIE, S. KIM and J. CHANG, Appl. Phys. Lett. 86 (2005) 032506.Google Scholar
  14. 14.
    M. L. REED, N. A. EL-MASRY, H. H. STADELMAIER, M. E. RITUMS, M. J. REED, C. A. PARKER, J. C. ROBERTS and S. M. BEDAIR, ibid. 79 (2001) 3473.CrossRefGoogle Scholar
  15. 15.
    M. ZAJAC, J. GOSK, E. GRZANKA, M. KAMIŃSKA, A. TWARDOWSKI, B. STROJEK, T. SZYSZKO and S. PODSIADLO, J. Appl. Phys. 93 (2003) 4715.Google Scholar
  16. 16.
    M. B. HAIDER, C. L. CONSTANTIN, H. AL-BRITHEN, H. YANG, E. TRIFAN, D. INGRAM, A. R. SMITH, C. V. KELLY and Y. IJIRI, ibid. 93 (2003) 5274.CrossRefGoogle Scholar
  17. 17.
    R. FRAZIER, G. THALER, M. OVERBERG, B. GILA, C. R. ALBERNATHY and S. J. PEARTON, Appl. Phys. Lett. 83 (2003) 1758.CrossRefGoogle Scholar
  18. 18.
    H. X. LIU, S. Y. WU, R. K. SINGH, L. GU, D. J. SMITH, N. NEWMAN, M. R. DILLEY, L. MONTES and M. B. SIMMONDS, ibid. 85 (2004) 4076.Google Scholar
  19. 19.
    S. E. PARK, H.-J. LEE, Y. C. CHO, S.-Y. JEONG, C. R. CHO and S. CHO, ibid. 80 (2002) 4187.Google Scholar
  20. 20.
    M. HASHIMOTO, Y.-K. ZHOU, M. KANAKURA and H. ASAHI, Solid State Commun. 122 (2002) 37.CrossRefGoogle Scholar
  21. 21.
    S. Y. WU, H. X. LIU, L. GU, R. K. SINGH, L. BUDD, M. VAN SCHILFGAARDE, M. R. MCCARTNEY, D. J. SMITH and N. NEWMAN, Appl. Phys. Lett. 82 (2003) 3047.Google Scholar
  22. 22.
    S. Y. WU, H. X. LIU, L. GU, R. K. SINGH, M. VAN SCHILFGAARDE, D. J. SMITH, M. DILLEY, L. MONTES, M. B. SIMMONDS and N. NEWMAN, Mat. Res. Soc. Symp. Proc. 798 (2004) Y10.57Google Scholar
  23. 23.
    J. S. LEE, J. D. LIM, Z. G. KHIM, Y. D. PARK, S. J. PEARTON and S. N. G. CHU, J. Appl. Phys. 93 (2003) 4512.Google Scholar
  24. 24.
    Y. SHON, Y. H. KWON, Y. S. PARK, SH. U. YULDASHEV, S. J. LEE, C. S. PARK, K. J. CHUNG, S. J. YOON, H. J. KIM, W. C. LEE, D. J. FU, T. W. KANG, X. J. FAN, Y. J. PARK and H. T. OH, ibid. 95 (2004) 761.CrossRefGoogle Scholar
  25. 25.
    S. DHAR, O. BRANDT. M. RAMSTEINER, V. E. SAPEGA and K. H. PLOOG, Phys. Rev. Lett. 94 (2005) 037205.CrossRefGoogle Scholar
  26. 26.
    S. W. JUNG, S.-J. AN, G.-C. YI, C. U. JUNG, S.-I. LEE and S. CHO, Appl. Phys. Lett. 80 (2002) 4561.Google Scholar
  27. 27.
    Y. W. HEO, M. P. IVILL, K. IP, D. P. NORTON and S. J. PEARTON, ibid. 84 (2004) 2292.Google Scholar
  28. 28.
    D. P. NORTON, S. J. PEARTON, A. F. HEBARD, N. THEODOROPOULOU, L. A. BOATNER and R. G. WILSON, ibid. 82 (2003) 239.CrossRefGoogle Scholar
  29. 29.
    H.-J. LEE, S.-Y. JEONG, C. R. CHO and C. H. PARK, ibid. 81 (2002) 4020.Google Scholar
  30. 30.
    K. ANDO, H. SAITO, Z. JIN, T. FUKUMURA, M. KAWASAKI, Y. MATSUMOTO and H. KOINUMA, J. Appl. Phys. 89 (2001) 7284.CrossRefGoogle Scholar
  31. 31.
    K. ANDO, H. SAITO, Z. JIN, T. FUKUMURA, M. KAWASAKI, Y. MATSUMOTO and H. KOINUMA, Appl. Phys. Lett. 78 (2001) 2700.CrossRefGoogle Scholar
  32. 32.
    K. ANDO, ibid. 82 (2003) 100.CrossRefGoogle Scholar
  33. 33.
    Y. M. CHO, W. K. CHOO, H. KIM, D. KIM and Y. E. IHM, ibid. 80 (2002) 3358.Google Scholar
  34. 34.
    S. W. YOON, S.-B. CHO, S. C. WE, S. YOON, B. J. SUH, H. K. SONG and Y. J. SHIN, J. Appl. Phys. 93 (2003) 7879.Google Scholar
  35. 35.
    J. H. KIM, H, KIM, Y. E. IHM and W. K. CHOO, ibid. 92 (2002) 6066.Google Scholar
  36. 36.
    C. ZENER, Phys. Rev. 81 (1951) 440.CrossRefGoogle Scholar
  37. 37.
    Idem., ibid. 82 (1951) 403.CrossRefGoogle Scholar
  38. 38.
    Idem., ibid. 83 (1951) 299.CrossRefGoogle Scholar
  39. 39.
    J. S. BLAKEMORE, “Solid State Physics”, 2nd Edition, (Cambridge University Press, New York 1985).Google Scholar
  40. 40.
    N. W. ASHCROFT and N. D. MERMIN, “Solid State Physics” (Holt-Reinhart-Winston, New York 1976).Google Scholar
  41. 41.
    H. OHNO, H. MUNEKATA, S. VON MOLNAR and L. L. CHANG, J. Appl. Phys. 69 (1991) 6103.CrossRefGoogle Scholar
  42. 42.
    S. J. PEARTON, C. R. ABERNATHY, M. E. OVERBERG, G. T. THALER, D. P. NORTON, N. THEODOROPOULOU, A. F. HEBARD, Y. D. PARK, F. REN, J. KIM and L. A. BOATNER, ibid. 93 (2003) 1.CrossRefGoogle Scholar
  43. 43.
    S. J. PEARTON, C. R. ABERNATHY, G. T. THALER, R. M. FRAZIER, D. P. NORTON, F. REN, Y. D. PARK, J. M. ZAVADA, I. A. BUYANOVA, W. M. CHEN and A. F. HEBARD, J. Phys.: Condens. Mater. 16 (2004) R209.Google Scholar
  44. 44.
    IGOR ŽUTIĆ, JAROSLAV FABIAN and S. DAS SARMA, Rev. Mod. Phys. 76 (2004) 323.Google Scholar
  45. 45.
    S. J. PEARTON, C. R. ABERNATHY, B. P. GILA, F. REN, J. M. ZAVADA and Y. D. PARK, Solid-State Electron. 48 (2004) 1965.CrossRefGoogle Scholar
  46. 46.
    T. GRAF, S. T. B. GOENNENWEIN and M. S. BRANDT, Phys. Stat. Sol. (b) 239 (2003) 277.Google Scholar
  47. 47.
    G. PRINZ, Science 282 (1998) 1660.CrossRefGoogle Scholar
  48. 48.
    T. STORY, R. R. GALAZKA, R. B. FRANKEL and P. A. WOLFF, Phys. Rev. Lett. 56 (1986) 777.CrossRefGoogle Scholar
  49. 49.
    K. SATO and H. KATAYAMA-YOSHIDA, Jpn J. Appl. Phys. 39 (2000) L555.Google Scholar
  50. 50.
    H. AKAI and P. H. DEDERICHS, Phys. Rev. B 47 (1993) 8739.CrossRefGoogle Scholar
  51. 51.
    H. AKAI, Phys. Rev. Lett. 81 (1998) 3002.CrossRefGoogle Scholar
  52. 52.
    P. HOHENBERG and W. KOHN, Phys. Rev. 136 (1964) 864.CrossRefGoogle Scholar
  53. 53.
    W. KOHN and L. J. SHAM, ibid. 140 (1965) 1133.CrossRefGoogle Scholar
  54. 54.
    K. SATO and H. KATAYAMA-YOSHIDA, Physica B 308 (2001) 904.Google Scholar
  55. 55.
    M. BERCIU and R. N. BHATT, Phys. Rev. Lett. 87 (2001) 107203.CrossRefGoogle Scholar
  56. 56.
    A. KAMINSKI and S. DAS SARMA, ibid. 88 (2001) 247201.Google Scholar
  57. 57.
    T. DIETL, F. MATSUKURA and H. OHNO, Phys. Rev. B 66 (2002) 033203.CrossRefGoogle Scholar
  58. 58.
    S. DAS SARMA, E. H. HWANG and A. KAMINSKI, ibid 67 (2003) 155201.CrossRefGoogle Scholar
  59. 59.
    J. WARNOCK and P. A. WOLFF, ibid 31 (1985) 6579.CrossRefGoogle Scholar
  60. 60.
    M. SAWICKI, T. DIETL, J. KOSSUT, J. IGALSON, T. WOJTOWICZ and W. PLESIEWICZ, Phys. Rev. Lett. 56 (1986) 508.CrossRefGoogle Scholar
  61. 61.
    J. M. D. COEY, M. VENKATESAN and C. B. FITZGERALD, Nat. Mater. 4 (2005) 73.Google Scholar
  62. 62.
    T. DIETL and J. SPALEK, Phys. Rev. Lett. 48 (1982) 355.CrossRefGoogle Scholar
  63. 63.
    T. DIETL, H. OHNO and F. MATSUKURA, Phys. Rev. B 63 (2001) 195205.CrossRefGoogle Scholar
  64. 64.
    T. DIETL, J. Appl. Phys. 89 (2001) 7437.CrossRefGoogle Scholar
  65. 65.
    Idem., Semicond. Sci. Technol. 17 (2002) 377.CrossRefGoogle Scholar
  66. 66.
    T. JUNGWIRTH, W.A. ATKINSON, B. LEE and A. H. MACDONALD, Phys. Rev. B 59 (1999) 9818.CrossRefGoogle Scholar
  67. 67.
    K. SATO and H. KATAYAMA-YOSHIDA, Jpn J. Appl. Phys. 40 (2001) L651.Google Scholar
  68. 68.
    Idem., Physica E 10 (2001) 251.Google Scholar
  69. 69.
    T. YAMAMOTO and H. KATAYAMA-YOSHIDA, Jpn. J. Appl. Phys. 38 (1999) L166.Google Scholar
  70. 70.
    H. KATAYAMA-YOSHIDA and K. SATO, Physica B 327 (2003) 337.CrossRefGoogle Scholar
  71. 71.
    K. SATO and H. KATAYAMA-YOSHIDA, Semicond. Sci. Technol. 17 (2002) 367.CrossRefGoogle Scholar
  72. 72.
    P. SHARMA, A. GUPTA, K. V. RAO, F. J. OWENS, R. SHARMA, R.AHUJA, J. M. OSORIO GUILLEN, B. JOHANSSON and G. A. GEHRING, Nat. Mater. 2 (2003) 673.CrossRefGoogle Scholar
  73. 73.
    T. MIZOKAWA, T. NAMBU, A. FUJIMORI, T. FUKUMURA and M. KAWASAKI, Phys. Rev. B 65 (2002) 085209.Google Scholar
  74. 74.
    C.-H. CHIEN, S. H. CHIOU, G. Y. GUO and Y.-D. YAO, J. Magnetism Magnetic Mater. 282 (2004) 275.CrossRefGoogle Scholar
  75. 75.
    S. Y. YUN, G.-B. CHA, Y. KWON, S. CHO, S. C. SOON and C. HONG, ibid. 272–276, Supplement 1 (2004) El563.Google Scholar
  76. 76.
    E.-C. LEE and K. J. CHANG, Phys. Rev. B 69 (2004) 085205.Google Scholar
  77. 77.
    Q. WANG and P. JENA, Appl. Phys. Lett. 84 (2004) 4170.Google Scholar
  78. 78.
    Q. WANG, Q. SUN, B. K. RAO and P. JENA, Phys. Rev. B 69 (2004) 233310.Google Scholar
  79. 79.
    Q. WANG, Q. SUN, P. JENA and Y. KAWAZOE, ibid 70 (2004) 052408.Google Scholar
  80. 80.
    X. FENG, J. Phys.: Condens. Matter. 16 (2004) 4251.Google Scholar
  81. 81.
    S-J. HAN, J. W. SONG, C.-H. YANG, S. H. PARK, J.-H. PARK, Y. H. JEONG and K. W. RHIE, Appl. Phys. Lett. 81 (2002) 4212.Google Scholar
  82. 82.
    H.-T. LIN, T.-S. CHIN, J.-C. SHIH, S.-H. LIN, T.-M. HONG, R.-T. HUANG, F.-R. CHEN and J.-J. KAI, ibid. 85 (2004) 621.Google Scholar
  83. 83.
    N. A. SPALDIN, Phys. Rev. B 69 (2004) 125201.CrossRefGoogle Scholar
  84. 84.
    M. S. PARK and B. I. MIN, ibid 68 (2003) 224436.Google Scholar
  85. 85.
    M. VENKATESAN, C. B. FITZGERALD, J. G. LUNNEY and J. M. D. COEY, Phys. Rev. Lett. 93 (2004) 177206.CrossRefGoogle Scholar
  86. 86.
    V. I. LITVINOV and V. K. DUGAEV, ibid. 86 (2001) 5593.CrossRefGoogle Scholar
  87. 87.
    H. KATAYAMA-YOSHIDA, R. KATO and T. YAMAMOTO, J. Cryst. Growth 231 (2001) 428.CrossRefGoogle Scholar
  88. 88.
    K. SATO and H. KATAYAMA-YOSHIDA, Jpn. J. Appl. Phys. 40 (2001) L485.Google Scholar
  89. 89.
    M. VAN SCHILFGAARDE and O. N. MYRASOV, Phys. Rev. B 63 (2001) 233205.Google Scholar
  90. 90.
    T. JUNGWIRTH, W. A. ATKINSON, B. H. LEE and A. H. MACDONALD, ibid. 59 (1999) 981.CrossRefGoogle Scholar
  91. 91.
    G. P. DAS, B. K. RAO and P. JENA, ibid. 68 (2003) 035207.Google Scholar
  92. 92.
    Q. WANG, Q. SUN and P. JENA, Phys. Rev. Lett. 93 (2004) 155501.Google Scholar
  93. 93.
    K. SATO, W. SCHWEIKA, P. H. DEDERICHS and H. KATAYAMA-YOSHIDA, Phys. Rev. B 70 (2004) 201202.Google Scholar
  94. 94.
    L. KRONIK, M. JAIN and J. R. CHELIKOWSKY, ibid. 66 (2002) 041203.CrossRefGoogle Scholar
  95. 95.
    E. KULATOV, H. NAKAYAMA, H. MARIETTE, H. OHTA and YU. A. USPENSKII, ibid. 66 (2002) 045203.CrossRefGoogle Scholar
  96. 96.
    B. SANYAL, O. BENGONE and S. MIRBT, ibid. 68 (2003) 205210.Google Scholar
  97. 97.
    P. MAHADEVAN and A. ZUNGER, Appl. Phys. Lett. 85 (2004) 2860.CrossRefGoogle Scholar
  98. 98.
    Idem., Phys. Rev. B 69 (2004) 115211.CrossRefGoogle Scholar
  99. 99.
    G. M. DALPIAN, SU-HUAI WEI, X. G. GONG, A. J. R. DA SILVA and A. FAZZIO (to be published).Google Scholar
  100. 100.
    G. M. DALPIAN and S.-H. WEI, “Transition from Ferromagnetism to Antiferromagnetism in GaMnN”, to be published.Google Scholar
  101. 101.
  102. 102.
    J. HONG and R. Q. WU, ibid. 68 (2003) 233306.Google Scholar
  103. 103.
    G. M. DALPIAN and S.-H. WEI, “Electron-induced stabilization of ferromagnetism in GaGdN”, to be published.Google Scholar
  104. 104.
    G. THALER, R. FRAZIER, B. GILAR, J. STAPLETON, M. DAVIDSON, C. R. ABERNATHY, S. J. PEARTON and C. SEGRE, Appl. Phys. Lett. 84 (2004) 2578.Google Scholar
  105. 105.
    S. S. A. SEO, M. W. KIM, Y. S. LEE, T. W. NOH, Y. D. PARK, G. T. THALER, M. E. OVERBERG, C. R. ABERNATHY and S. J. PEARTON, ibid. 82 (2003) 4749.Google Scholar
  106. 106.
    S. DHAR, O. BRANDT, A. TRAMPERT, K. J. FRIEDLAND, Y. J. SUN and K. H. PLOOG, Phy. Rev. B 67 (2003) 165205.Google Scholar
  107. 107.
    F. MATSUKURA, E. ABE, Y. OHNO and H. OHNO, Appl. Surf. Sci. 159–160 (2000) 265.Google Scholar
  108. 108.
    S. DHAR, O. BRANDT, A. TRAMPERT, L. DÄWERITZ, K. J. FRIEDLAND, K. H. PLOOG J. KELLER, B. BESCHOTEN and G. GÜNTHERODT, Appl. Phys. Lett. 82 (2003) 2077.CrossRefGoogle Scholar
  109. 109.
    B. GRANDIDIER, J. P. NYS, C. DELERUE, D. STIEVENARD, Y. HIGO and M. TANAKA, ibid. 77 (2000) 4001.CrossRefGoogle Scholar
  110. 110.
    K. M. YU, W. WALUKIEWICZ, T. WOJTOWICZ, I. KURYLISZYN, X. LIU, Y. SASAKI and J. K. FURDYNA, Phys. Rev. B 65 (2002) 201303.Google Scholar
  111. 111.
    T. DIETL, Nat. Mater. 2 (2003) 646.CrossRefGoogle Scholar
  112. 112.
    B. A. BUNKER, W.-F. PONG, V. DEBSKA, D. R. YODER-SHORT and J. F. FURDYNA, “Diluted Magnetic (Semimagnetic) Semiconductors”, edited by R. L. Aggarwal, J. K. Furdyna, and S. von Molnar (Materials Research Society, Pittsburgh, PA, 1987), vol. 89, p. 231.Google Scholar
  113. 113.
    A. TSUKAZAKI, A. OHTOMO, T. ONUMA, M. OHTANI, T. MAKINO, M. SUMIYA, K. OHTANI, S. F. CHICHIBU, S. FUKE, Y. SEGAWA, H. OHNO, H. KOINUMA and M. KAWASAKI, Nat. Mater. 4 (2005) 42.CrossRefGoogle Scholar
  114. 114.
    Ü. ÖZGÜR, YA. I. ALIVOV, C. LIU, A. TEKE, M. RESHCHIKOV, S. DoGAN, V. AVRUTIN, S.-J. CHO and H. MORKOÇ, J. Appl. Phys. Review (2005), in press.Google Scholar
  115. 115.
    T. FUKUMURA, Z. JIN, A. OHTOMO, H. KOINUMA and M. KAWASAKI, Appl. Phys. Lett. 75 (1999) 3366.CrossRefGoogle Scholar
  116. 116.
    For details of MBE growth, see M.A. Herman and H. Sitter, “Molecular Beam Epitaxy: Fundamentals and Current Status”, 2nd edition (Springer, Berlin, 1996).Google Scholar
  117. 117.
    For details of MOCVD growth, see G. B. Stringfellow, “Organometallic Vapor-Phase Epitaxy: Theory and Practice”, 2nd edition (Academic, London, 1999).Google Scholar
  118. 118.
    For details of PLD growth, see Douglas B. Chrisey and Graham K. Hubler, “Pulsed laser deposition of thin films” (J. Wiley, New York, 1994).Google Scholar
  119. 119.
    K. UEDA, H. TABATA and T. KAWAI, Appl. Phys. Lett. 79 (2001) 988.Google Scholar
  120. 120.
    T. WAKANO, N. FUJIMURA, Y. MORINAGA, N. ABE, A. ASHIDA and T. ITO, Physica E 10 (2001) 260.CrossRefGoogle Scholar
  121. 121.
    H. SAEKI, H. TABATA and T. KAWAI, Solid State Commun. 120 (2001) 439.CrossRefGoogle Scholar
  122. 122.
    T. FUKUMURA, Z. JIN, M. KAWASAKI, T. SHONO, T. HASEGAWA, S. KOSHIHARA and H. KOINUMA, Appl. Phys. Lett. 78 (2001) 958.Google Scholar
  123. 123.
    Z. JIN, T. FUKUMURA, M. KAWASAKI, K. ANDO, H. SAITO, T. SEKIGUCHI, Y. Z. YOO, M. MURAKAMI, Y. MATSUMOTO, T. HASEGAWA and H. KOINUMA, ibid. 78 (2001) 3824.Google Scholar
  124. 124.
    A. TIWARI, C. JIN, A. KVIT, D. KUMAR, J. F. MUTH and J. NARAYAN, Solid State Commun. 121 (2002) 371.Google Scholar
  125. 125.
    G. LAWES, A. S. RISBUD, A. P. RAMIREZ and R. SESHADRI, Phys. Rev. B 71 (2005) 045201.CrossRefGoogle Scholar
  126. 126.
    M. H. KANE, K. SHALINI, C. J. SUMMERS, R. VARATHARAJAN, J. NAUSE, C. R. VESTAL, Z. J. ZHANG and I. T. FERGUSON, J. Appl. Phys. 97 (2005) 023906.CrossRefGoogle Scholar
  127. 127.
    S. J. PEARTON, D. P. NORTON, K. IP and Y. W. HEO, J. Vac. Sci. Technol. B 22 (2004) 932.CrossRefGoogle Scholar
  128. 128.
    X. M. CHENG and C. L. CHIEN, J. Appl. Phys. 93 (2003) 7876.Google Scholar
  129. 129.
    S. LIM, M. JEONG, M. HAM and J. MYOUNG, Jpn. J. Appl. Phys. 2B 43 (2004) L280.Google Scholar
  130. 130.
    M. IVILL, S. J. PEARTON, D. P. NORTON, J. KELLY and A. F. HEBARD, J. Appl. Phys. 97 (2005) 053904.CrossRefGoogle Scholar
  131. 131.
    D. P. NORTON, M. E. OVERBERG, S. J. PEARTON, K. PRUESSNER, J. D. BUDAI, L. A. BOATNER, M. F. CHISHOLM, J. S. LEE, Z. G. KHIM, Y. D. PARK and R. G. WILSON, Appl. Phys. Lett. 83 (2003) 5488.CrossRefGoogle Scholar
  132. 132.
    K. RODE, A. ANANE, R. MATTANA, J.-P. CONTOUR, O. DURAND and R. LEBOURGEOIS, J. Appl. Phys. 93 (2003) 7676.CrossRefGoogle Scholar
  133. 133.
    S. G. YANG, A. B. PAKHOMOV, S. T. HUNG and C. Y. WONG, IEEE Trans. Magn. 38 (2002) 2877.CrossRefGoogle Scholar
  134. 134.
    N. JEDRECY, H. J. VON BARDELEBEN, Y. ZHENG and J.-L. CANTIN, Phys. Rev. B 69 (2004) 041308.CrossRefGoogle Scholar
  135. 135.
  136. 136.
    N. HONG, V. BRIZE and J. SAKAI, Appl. Phys. Lett. 86 (2005) 082505.Google Scholar
  137. 137.
    T. FUKUMURA, Y. YAMADA, H. TOYOSAKI, T. HASEGAWA, H. KOINUMA and M. KAWASAKI, Appl, Surf. Sci. 223 (2004) 62.CrossRefGoogle Scholar
  138. 138.
    S. KOLESNIK and B. DABROWSKI, J. Appl. Phys. 96 (2004) 5379.CrossRefGoogle Scholar
  139. 139.
    L. W. GUO, D. L. PENG, H. MAKINO, K. INABA, H. J. KO, K. SUMIYAMA and Y. YAO, J. Magn. Magn. Mater. 213 (2000) 321.CrossRefGoogle Scholar
  140. 140.
    A. CHARTIER, P. D’ARCO, R. DOVESI and V. R. SAUNDERS, Phys. Rev. B 60 (1999) 14042.CrossRefGoogle Scholar
  141. 141.
    S.-J. HAN, T.-H. JANG, Y. B. KIM, B.-G. PARK, J.-H. PARK and Y. H. JEONG, Appl. Phys. Lett. 83 (2003) 920.Google Scholar
  142. 142.
    C. LIU, F. YUN, B. XIAO, S.-J. CHO, Y.-T. MOON, H. MORKOÇ, M. ABOUZAID, P. RUTERANA, K. M. YU and W. WALUKIEWICZ, J. Appl. Phys. (2005) in the press.Google Scholar
  143. 143.
    S. KOLESNIK, B. DABROWSKI and J. MAIS, J. Appl. Phys. 95 (2004) 2582.CrossRefGoogle Scholar
  144. 144.
    W. H. BRUMAGE, C. F. DORMAN and C. R. QUADE, Phys. Rev. B 63 (2001) 104411.CrossRefGoogle Scholar
  145. 145.
    J. SHIM, T. HWANG, S. LEE, J. PARK, S. HAN and Y. H. JEONG, Appl. Phys. Lett. 86 (2005) 082503.Google Scholar
  146. 146.
    For more specific information of these characterization methods, the readers are referred to C. R. Brundle, C. A. Evans, Jr., and S. Wilson, “Encyclopedia of materials characterization: Surfaces, Interfaces, Thin Films” (Butterworth-Heinemann, London, 1992).Google Scholar
  147. 147.
    Z. JIN, Y.-Z. YOO, T. SEKIGUCHI, T. CHIKYOW, H. OFUCHI, H. FUJIOKA, M. OSHIMA and H. KOINUMA, Appl. Phys. Lett. 83 (2003) 39.Google Scholar
  148. 148.
    K. R. KITTILSTVED, N. S. NORBERG and D. R. GAMELIN, Phys. Rev. Lett 94, (2005) 147209.CrossRefGoogle Scholar
  149. 149.
    Y. M. KIM, M. YOON, I.-W. PARK, Y. J. PARK and JONG H. LYOU, Solid State Commun. 129 (2004) 175.Google Scholar
  150. 150.
    M. KUNISU, F. OBA, H. IKENO, I. TANAKA and T. YAMAMOTO, Appl. Phys. Lett. 86 (2005) 121902.CrossRefGoogle Scholar
  151. 151.
    A. F. JALBOUT, H. CHEN and S. L. WHITTENBURG, ibid. 81 (2002) 2217.CrossRefGoogle Scholar
  152. 152.
    S. RAMACHANDRAN, A. TIWARI and J. NARAYAN, ibid. 84 (2004) 5255.CrossRefGoogle Scholar
  153. 153.
    S.-W. LIM, D.-K. HWANG and J.-M. MYOUNG, Solid State Commun. 125 (2003) 231.CrossRefGoogle Scholar
  154. 154.
    A. S. RISBUD, N. A. SPALDIN, Z. Q. CHEN, S. STEMMER and RAM SESHADRI, Phys. Rev. B 68 (2003) 205202.CrossRefGoogle Scholar
  155. 155.
    P. KOIDL, ibid. 15 (1977) 2493.CrossRefGoogle Scholar
  156. 156.
    Z. JIN, M. MURAKAMI, T. FUKUMURA, Y. MATSUMOTO, A. OHTOMO, M. KAWASAKI and H. KOMUMA, J. Cryst. Growth 214–215 (2000) 55.Google Scholar
  157. 157.
    Z.-W. JIN, T. FUKUMURA, K. HASEGAWA, Y.-Z. YOO, K. ANDO, T.SEKIGUCHI, P. AHMET, T. CHIKYOW, T. HASEGAWA, H. KOINUMA and M. KAWASAKI, ibid. 237 (2002) 548.CrossRefGoogle Scholar
  158. 158.
    Y. ISHIDA, J.I. HWANG, M. KOBAYASHI, A. FUJIMORI, H. SAEKI, H. TABATA and T. KAWAI, Physica B 351 (2004) 304.CrossRefGoogle Scholar
  159. 159.
    N. H. HONG, J. SAKAI and A. HASSINI, J. Phys.: Condens. Matter. 17 (2005) 199.Google Scholar
  160. 160.
    D. A. SCHWARTZ, K. R. KITTILSTVED and D. R. GAMELIN, Appl. Phys. Lett. 85 (2004) 1395.Google Scholar
  161. 161.
    P. V. RADOVANOVIC and D. R. GAMELIN, Phys. Rev. Lett. 91 (2003) 157202.CrossRefGoogle Scholar
  162. 162.
    K. ANDO, T. HAYASHI, M. TANAKA and A. TWARDOWSKI, J. Appl. Phys. 83 (1998) 6548.Google Scholar
  163. 163.
    K. ANDO, H. I. SAITO, V. ZAYETS and M. C. DEBNATH, J. Phys.: Condens. Matter. 16 S5541 (2004) S5541.Google Scholar
  164. 164.
    K. ANDO, “Magneto-optics (Springer Series in Solid-State Science)”, edited by S. Sugano and N. Kojima (Springer, Berlin, 2000) vol. 128, p. 211.Google Scholar
  165. 165.
    T. SEKIGUCHI, K. HAGA and K. INABA, J. Cryst. Growth. 214 (2000) 68.Google Scholar
  166. 166.
    See for example H. Morkoç, “Nitride Semiconductors and Devices”, 2nd edition (Springer, New York, 2006).Google Scholar
  167. 167.
    T. SASAKI, S. SONODA, Y. YAMAMOTO, K. SUGA, S. SHIMIZU, K. KINDO and H. HORI, J. Appl. Phys. 91 (2002) 7911.Google Scholar
  168. 168.
    K. H. PLOOG, S. DHAR and A. TRAMPERT, J. Vac. Sci. Technol. B 21 (2003) 1756.CrossRefGoogle Scholar
  169. 169.
    V. A. CHITTA, J. A. H. COAQUIRA, J. R. L. FERNANDEZ, C. A. DUARTE, J. R. LEITE, D. SCHIKORA, D. J. AS, K. LISCHKA and E. ABRAM, Appl. Phys. Lett. 85 (2004) 3777.CrossRefGoogle Scholar
  170. 170.
    M. A. BOSELLI, I. C. DA CUNHA LIMA, J. R. LEITE, A. TROPER and A. GHAZALI, ibid. 84 (2004) 1138.CrossRefGoogle Scholar
  171. 171.
    F. L. DEEPAK, P. V. VANITHA, A. GOVINDARAJ and C. N. R. RAO, Chem. Phys. Lett. 374 (2003) 314.CrossRefGoogle Scholar
  172. 172.
  173. 173.
    T. GRAF, M. GJUKIC, M. S. BRANDT, M. STUTZMANN and O. AMBACHER, ibid. 81 (2002) 5159.CrossRefGoogle Scholar
  174. 174.
    T. GRAF, M. GJUKIC, M. HERMANN, M. S. BRANDT, M. STUTZMANN, L. GÖrgens, J. B. Phillip and O. AMBACHER, J. Appl. Phys. 93 (2003) 9697.CrossRefGoogle Scholar
  175. 175.
    A. WOLOS, M. PALCZEWSKA, M. ZAJAC, J. GOSK, M. KAMINSKA, A. TWARDOWSKI, M. BOCKOWSKI, I. GRZEGORY and S. POROWSKI, Phys. Rev. B 69 (2004) 115210.CrossRefGoogle Scholar
  176. 176.
    M. J. REED, F. E. ARKUN, E. A. BERKMAN, N. A. ELMASRY, J. ZAVADA, M. O. LUEN, M. L. REED and S. M. BEDAIR, Appl. Phys. Lett. 86 (2005) 102504.CrossRefGoogle Scholar
  177. 177.
    F. E. ARKUN, M. J. REED, E. A. BERKMAN, N. A. EL-MASRY, J. M. ZAVADA, M L. REED and S. M. BEDAIR, ibid. 85 (2004) 3809.CrossRefGoogle Scholar
  178. 178.
    J. M. BAIK, Y. SHON, T. W. KANG and J.-L. LEE, ibid. 84 (2004) 1120.CrossRefGoogle Scholar
  179. 179.
    J. M. BAIK, S. U. KIM, Y. M. KOO, T. W. KANG and J.-L. LEE, Solid State Lett. 7 (2004) G313.CrossRefGoogle Scholar
  180. 180.
    G. THALER, R. FRAZIER, B. GILA, J. STAPLETON, M. DAVIDSON, C. R. ABERNATHY, S. J. PEARTON and C. SEGRE, Appl. Phys. Lett. 84 (2004) 1314.Google Scholar
  181. 181.
    J. KREISSL, W. ULRICI, M. EL-METOUI, A. M. VASSON, A. VASSON and A. GAVAIX, Phys. Rev. B 54 (1996) 10508.CrossRefGoogle Scholar
  182. 182.
    J. SCHNEIDER, U. KAUFMANN, W. WILKENING, M. BAEUMLER and F. KOHL, Phys. Rev. Lett. 59 (1987) 240.CrossRefGoogle Scholar
  183. 183.
    R. Y. KOROTKOV, J. M. GREGIE and B. W. WESSELS, Physica B 308-310 (2001) 30.Google Scholar
  184. 184.
    Idem., Appl. Phys. Lett. 80 (2002) 1731.CrossRefGoogle Scholar
  185. 185.
    T. GRAF, M. GJUKIC, M. HERMANN, M. S. BRANDT, M. STUTZMANN and O. AMBACHER, Phys. Rev. B 67 (2003) 165215.Google Scholar
  186. 186.
    N. S. AVERKIEV, A. A. GUTKIN, N. M. KOLCHANOVA and M. A. RESHCHIKOV, Fiz. Tekh. Poluprovodn. 18 (1984) 1629 [Sov. Phys. Semicond. 18 (1984) 1019].Google Scholar
  187. 187.
    K. W. EDMONDS, N. R. S. FARLEY, T. K. JOHAL, R. P. CAMPION, B. L. GALLAGHER, C. T. FOXON and G. VAN DER LAAN, J. Appl. Phys. 95 (2004) 7166.CrossRefGoogle Scholar
  188. 188.
    A. WOLOS, A. WYSMOLEK, M. KAMINSKA, A. TWARDOWSKI, M. BOCKOWSKI, I. GRZEGORY, S. POROWSKI and M. POTEMSKI, Phys. Rev. B 70 (2004) 245202.CrossRefGoogle Scholar
  189. 189.
    R. Y. KOROTKOV, J. M. GREGIE and B. W. WESSELS, Mat. Res. Soc. Symp. Proc. 639 (2001) G3.7.Google Scholar
  190. 190.
    M. A. RESHCHIKOV, F. SHAHEDIPOUR, R. Y. KOROTKOV, B. W. WESSELS and M. P. ULMER, J. Appl. Phys. 87 (2000) 3351.CrossRefGoogle Scholar
  191. 191.
    D. S. MCCLURE, Solid State Phys. 9 (1954) 488.Google Scholar
  192. 192.
    O. GELHAUSEN, E. MALGUTH, M. R. PHILLIPS, E. M. GOLDYS, M. STRASSBURG, A. HOFFMANN, T. GRAF, M. GJUKIC and M. STUTZMANN, Appl. Phys. Lett. 84 (2004) 4514.CrossRefGoogle Scholar
  193. 193.
    B. HAN, R. Y. KOROTKOV, B. W. WESSELS and M. P. ULMER, ibid. 84 (2004) 5320.Google Scholar
  194. 194.
    B. HAN, B. W. WESSELS and M. P. ULMER, ibid. 86 (2005) 042505.Google Scholar
  195. 195.
    U. GERSTMANN, A. T. BLUMENAU and H. OVERHOF, Phys. Rev. B 63 (2001) 075204.CrossRefGoogle Scholar
  196. 196.
    A. Y. POLYKOV, N. B. SMIMOV, A. V. GOVORKOV, N. Y. PASHIKOV, J. KIM, F. REN, M. E. OVERBERG, G. THALER, C. R. ABERMATHY, S. J. PEARTON and R. G. WILSON, J. Appl. Phys. 92 (2002) 3130.Google Scholar
  197. 197.
    I. Y. YOON, T. W. KANG, M. C. JEONG, M. H. HAM and J. M. MYOUNG, Appl. Phys. Lett. 85 (2004) 4878.Google Scholar
  198. 198.
    R. HEITZ, P. MAXIM, L. ECKEY, P. THURIAN, A. HOFFMANN, I. BROSER, K. PRESSEL and B. K. MEYER, Phys. Rev. B 55 (1997) 4382.CrossRefGoogle Scholar
  199. 199.
    J. BAUR, K. MAIER, M. KUNZER, U. KAUFMANN and J. SCHNEIDER, Appl. Phys. Lett. 65 (1994) 2211.CrossRefGoogle Scholar
  200. 200.
    M. HASHIMOTO, H. TANAKA, R. ASANO, S. HASEGAWA and H. ASAHI, ibid. 84 (2004)4191.CrossRefGoogle Scholar
  201. 201.
    L. M. CORLISS, N. ELLIOTT and J. M. HASTINGS, Phys. Rev. 79 (1950) 350.Google Scholar
  202. 202.
    U. HAUSSERMANN, P. VIKLUND, M. BOSTROM, R. NORRESTAM and S. I. SIMAK, Phys. Rev. B 63 (2001) 125118.Google Scholar
  203. 203.
    K. INUMARU, H. OKAMOTO and S. J. YAMANAKA, J. Cryst. Growth. 237–239 (2002) (2050).Google Scholar
  204. 204.
    T. TAKEUCHI, M. TAGUCHI, Y. HARADA, T. TOKUSHIMA, Y. TAKATA, A. CHAINANI, J. KIM, H. MAKINO, T. YAO, T. TSUKAMOTO, S. SHIN and K. KOBAYASHI, Jpn. J. Appl. Phys. 44 (2005) L153.Google Scholar
  205. 205.
    R. K. SINGH, STEPHEN Y. WU, H. X. LIU, LIN GU, D. J. SMITH and N. NEWMAN, Appl. Phys. Lett. 86 (2005) 012504.Google Scholar
  206. 206.
    S. G. YANG, A. B. PAKHOMOV, S. T. HUNG and C. Y. WONG, ibid. 81 (2002) 2418.Google Scholar
  207. 207.
    A. Y. POLYAKOV, N. B. SMIRNOV, A. V. GOVORKOV, N. V. PASHKOVA, A. A. SHLENSKY, S. J. PEARTON, M. E. OVERBERG, C. R. ABERNATHY, J. M. ZAVADA and R. G. WILSON, J. Appl. Phys. 93 (2003) 5388.CrossRefGoogle Scholar
  208. 208.
    A. OIWA, A. ENDO, S. KATSUMOTO, Y. IYE, H. OHNO and H. MUNEKATA, Phys. Rev. B 59 (1999) 5826.CrossRefGoogle Scholar
  209. 209.
    U. SIVAN, O. ENTIN-WOHLMAN and Y. IMRY, Phys. Rev. Lett. 60 (1988) 1566.CrossRefGoogle Scholar
  210. 210.
    Y. ZHANG and M. P. SARACHIK, Phys. Rev. B 43 (1991) 7212.Google Scholar
  211. 211.
    N. TERAGUCHI, A. SUZUKI, Y. NANISHI, Y.-K. ZHOU, M. HASHIMOTO and H. ASAHI, Solid State Commun. 122 (2002) 651.CrossRefGoogle Scholar
  212. 212.
    T. MARUYAMA, S. MORISHITA, H. KAGATSUME, Y. NANISHI and K. AKIMOTO, IPAP Conference Series 1 (2000) p. 482 (Proceeding of the International Workshop on Nitride Semiconductors, Institute of Pure and Applied Physics, Tokyo, 2000).Google Scholar
  213. 213.
    P. JUNOD, A. MENTH and O. VOGT, Phys. Kondens. Materie 8 (1969) 323.Google Scholar
  214. 214.
    R. CONSIGLIO, D. R. BAKER, G. PAUL and H. E. STANLEY, Physica A 319 (2003) 49.CrossRefGoogle Scholar
  215. 215.
    S. A. WOLF, D. D. AWSCHALOM, R. A. BUHRMAN, J. M. DAUGHTON, S. VON MOLNÄr, M. L. Roukes, A. Y. Chtchelkanova and D. M. TREGER, Science 294 (2001) 1488.CrossRefGoogle Scholar
  216. 216.
    R. M. STROUD, A. T. HANBICKI, Y. D. PARK, G. KIOSEOGLOU, A. G. PETUKHOV, B. T. JONKER, G. ITSKOS and A. PETROU, Phys. Rev. Lett. 89 (2002) 166602.CrossRefGoogle Scholar
  217. 217.
    S. DATTA and B. DAS, Appl. Phys. Lett. 56 (1990) 665.CrossRefGoogle Scholar
  218. 218.
    YU. BYCHKOV and E. L. RASHBA, J. Phys. C 17 (1984) 6093.CrossRefGoogle Scholar
  219. 219.
    V. I. LITVINOV, Phys. Rev. B 68 (2003) 155314.CrossRefGoogle Scholar
  220. 220.
    S. HAO, G. ZHOU, J. WU, W. DUAN and B.-L. GU, ibid. 69 (2004) 113403.Google Scholar
  221. 221.
    K. SATO and H. KATAYAMA-YOSHIDA, Mat. Res. Soc. Symp. Proc. 666 (2001) F4.6.Google Scholar
  222. 222.
    H. OHNO, D. CHIBA, F. MATSUKURA, T. OMIYA, E. ABE, T. DIETL, Y. OHNO and K. OHTANI, Nature 408 (2000) 944.CrossRefGoogle Scholar
  223. 223.
    R. FIEDERLING, M. KEIM, G. REUSCHER, W. OSSAU, G. SCHMIDT, A. WAAG and L. W. MOLENKAMP, ibid. 402 (1999) 787.Google Scholar
  224. 224.
    Y. OHNO, D. K. YOUNG, B. BESCHOTEN, F. MATSUKURA, H. OHNO and D. D. AWSCHALOM, ibid. 402 (1999) 790.Google Scholar
  225. 225.
    I. A. BUYANOVA, M. IZADIFARD, W. M. CHEN, J. KIM, F. REN, G. THALER, C. R. ABERNATHY, S. J. PEARTON, C. PAN, G. CHEN, J. CHYI and J. M. ZAVADA, Appl. Phys. Lett. 84 (2004) 2599.CrossRefGoogle Scholar
  226. 226.
    A. Y. POLYAKOV, N. B. SMIRNOV, A. V. GOVORKOV, J. KIM, F. REN, M. E. OVERBERG, G. T. THALER, C. R. ABERNATHY, S. J. PEARTON, C.-M. LEE, J.-I. CHYI, R. G. WILSON and J. M. ZAVADA, Solid-State Electron. 47 (2003) 963.Google Scholar
  227. 227.
    A. Y. POLYAKOV, A. V. GOVORKOV, N. B. SMIRNOV, N. Y. PASHKOVA, G. T. THALER, M. E. OVERBERG, R. FRAZIER, C. R. ABERNATHY, S. J. PEARTON, JIHYUN KIM and F. REN, J. Appl. Phys. 92 (2002) 4989.Google Scholar
  228. 228.
    A. Y. POLYAKOV, N. B. SMIRNOV, A. V. GOVORKOV, J. KIM, F. REN, M. E. OVERBERG, G. T. THALER, R. M. FRAZIER, C. R. ABERNATHY, S. J. PEARTON, I. A. BUYANOVA, G. Y. RUDKO, W. M. CHEN, C. C. PAN, G. T. CHEN, J.-I. CHYI and J. M. ZAVADA, J. Electron. Mater. 33 (2004) 241.Google Scholar
  229. 229.
    I. A. BUYANOVA, M. IZADIFARD, L. STORASTA, W. M. CHEN, J. KIM, F. REN, G. THALER, C. R. ABERNATHY, S. J. PEARTON, C.-C. PAN, G.-T. CHEN, J.-I. CHYI and J. M. ZAVADA, ibid. 33 (2004) 467.Google Scholar
  230. 230.
    I. A. BUYANOVA, J. P. BERGMAN, W. M. CHEN, G. THALER, R. FRAZIER, C. R. ABERNATHY, S. J. PEARTON, J. KIM, F. REN, F. V. KYRYCHENKO, C. J. STANTON, C.-C. PAN, G.-T. CHEN, J.-I. CHYI and J. M. ZAVADA, J. Vac. Sci. Technol. B 22 (2004) 2668.CrossRefGoogle Scholar
  231. 231.
    M. TANAKA and Y. HIGO, Phys. Rev. Lett. 87 (2001) 26602.CrossRefGoogle Scholar
  232. 232.
    D. J. MONSMA, R. VLUTTERS and J. C. LODDER, Science 281 (1998) 407; R. SATO and K. MIZUSHIMA, Appl. Phys. Lett. 79 (2001) 1157.Google Scholar
  233. 233.
    B. DAS, S. DATTA and R. REIFENBERGER, Phys. Rev. B 41 (1990) 8278.Google Scholar
  234. 234.
    G. DRESSELHAUS, Phys. Rev. 100 (1955) 580.Google Scholar
  235. 235.
    B. BESCHOTEN, E. JOHNSON-HALPERIN, D. K. YOUNG, M. POGGIO, J. E. GRIMALDI, S. KELLER, S. P. DENBAARS, U. K. MISHRA, E. L. HU and D. D. AWSCHALOM, Phys. Rev. B 63 (2001) 121202.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • C. Liu
    • 1
  • F. Yun
    • 1
  • H. Morkoç
    • 1
  1. 1.Department of Electrical Engineering and Physics DepartmentVirginia Commonwealth UniversityRichmondUSA

Personalised recommendations