Advertisement

Synthesis and photoluminescence of ZnO nanowires/nanorods

  • J. Grabowska
  • K. K. Nanda
  • E. McGlynn
  • J. P. Mosnier
  • M. O. Henry
  • A. Beaucamp
  • A. Meaney
Article

Abstract

We report growth of ZnO nanowires on various substrates using a vapour phase transport method and show that the growth mechanism is vapour-liquid-solid growth. We present photoluminescence data for samples grown on a-plane sapphire at room and low temperatures indicating that the optical quality of these structures is potentially excellent, with intense emission and narrow bound exciton linewidths. The intensity decays rapidly with increasing temperature, indicating a strong temperature-activated non-radiative mechanism whose origin is unclear. We observe a high energy excitonic emission close to the band edge which we assign to the “surface” exciton in ZnO at ∼3.368 eV. This assignment is consistent with the large surface to volume ratio of the nanowire systems under consideration and also indicates that this large ratio has a significant effect on the luminescence even at low temperatures. These surface effects may also be responsible for the rapid decay of the luminescence with increasing temperature via a temperature-activated surface recombination. The nanowire systems appear to offer the prospect of extremely efficient excitonic emission for device applications, and we note that one of the important aspects of achieving this potential will be control of the surface effects via passivation or other means.

Keywords

Sapphire Band Edge Surface Effect Device Application Optical Quality 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. C. Look, Mat. Sci. Eng. B80 (2001) 383.Google Scholar
  2. 2.
    M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo and P. Yang, Science 292 (2001) 1987.CrossRefPubMedGoogle Scholar
  3. 3.
    Y. J. Xing, Z. H. Xi, Z. Q. Xue, X. D. Zhang, J. H. Song, R. M. Wang, J. Xu, Y. Song, S. L. Zhang and D. P. Yu, Appl. Phys. Lett. 83 (2003) 1689.CrossRefGoogle Scholar
  4. 4.
    M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber and P. Yang, Adv. Mater. 13 (2001) 113.CrossRefGoogle Scholar
  5. 5.
    X. Y. Kong and Z. L. Wang, Appl. Phys. Lett. 84 (2004) 975.CrossRefGoogle Scholar
  6. 6.
    W. L. Hughes and Z. L. Wang, J. Am. Chem. Soc. 126 (2004) 6703.CrossRefPubMedGoogle Scholar
  7. 7.
    Z. L. Wang, X. Y. Kong and J. M. Zuo, Phys. Rev. Lett. 91 (2003) article 185502.Google Scholar
  8. 8.
    M. S. Gudikson and C. M. Lieber, J. Am. Chem. Soc. 122 (2000) 8801.CrossRefGoogle Scholar
  9. 9.
    M. Lorenz, J. Lenzner, E. M. Kaidashev, H. Hochmuth and M. Grundmann, Ann. Phys. (Leipzig) 13 (2004) 39.CrossRefGoogle Scholar
  10. 10.
    B. D. Yao, Y. F. Chan and N. Wang, Appl. Phys. Lett. 81 (2002) 757.CrossRefGoogle Scholar
  11. 11.
    E. Mcglynn, J. Fryar, G. Tobin, C. Roy, M. O. Henry, J.-P. Mosnier, E. Deposada and J. G. Lunney, Thin Solid Films 458 (2004) 330.CrossRefGoogle Scholar
  12. 12.
    R. Dingle, Phys. Rev. Lett. 23 (1969) 579.CrossRefGoogle Scholar
  13. 13.
    B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Strassburg, M. Dworzak, U. Haboeck and A. V. Rodina, Phys. Stat. Solidi (b) 241 (2004) 231.CrossRefGoogle Scholar
  14. 14.
    V. V. Travnikov, A. Freiberg and S. F. Savikhin, J. Lumin. 47 (1990) 107.CrossRefGoogle Scholar
  15. 15.
    S. F. Savikhin and A. Freiberg, J. Lumin. 55 (1993) 1.CrossRefGoogle Scholar
  16. 16.
    J. Grabowska, A. Meaney, K. K. Nanda, J.-P. Mosnier, M. O. Henry, J. R. Duclère and E. Mcglynn, Phys. Ref. B 71 (2005) article #115439.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • J. Grabowska
    • 1
  • K. K. Nanda
    • 1
  • E. McGlynn
    • 1
  • J. P. Mosnier
    • 1
  • M. O. Henry
    • 1
  • A. Beaucamp
    • 1
  • A. Meaney
    • 1
  1. 1.School of Physical Sciences & National Centre for Plasma Science & TechnologyDublin City UniversityIreland

Personalised recommendations