Skip to main content

Advertisement

Log in

Review: alkali-activated blast furnace slag for eco-friendly binders

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

From infrastructure to national defense construction, concrete has been a key enabler in human history. While as the main binding material, ordinary Portland cement production indirectly threatens the human health due to the CO2 emissions contributing to the greenhouse effect. Alkali-activated materials show great promise to be one type of feasible alternative binder. Blast furnace slag (BFS) is one of the commonly used precursors that used to preparation alkali-activated slag (AAS) due to the higher content of glassy components. Accelerating the wide application of AAS requires the reaction behavior of BFS to be clearly understood. Such reaction behavior is strongly related to the BFS structure. Thus, it is crucial to identify and decipher how the basic structure of BFS control their engineering properties. Here, we review some of the recent efforts in this direction. In the present review, we report how the BFS structure controls the reaction kinetics and reaction products as well as the mechanical properties of AAS. We also envisage a perspective in which the BFS reaction behavior can be investigated and interpreted by combining topology constraint theory, machine learning and atomic simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15

Similar content being viewed by others

References

  1. Provis JL, Bernal SA (2014) Geopolymers and Related Alkali-Activated Materials. Annu Rev Mater Res. https://doi.org/10.1146/annurev-matsci-070813-113515

    Article  Google Scholar 

  2. Noureddine M, Ali B (2018) Experimental investigation of bearing wear of a gear unit DMGH 25.4 of horizontal cement mill. World Eng. https://doi.org/10.1108/WJE-12-2016-0157

    Article  Google Scholar 

  3. Raj S, Mohammad S, Das R, Saha S (2017) Coconut fibre-reinforced cement-stabilized rammed earth blocks. World Eng. https://doi.org/10.1108/WJE-10-2016-0101

    Article  Google Scholar 

  4. Zhao Y, Qiu J, Xing J, Sun X (2020) Recycling of quarry dust for supplementary cementitious materials in low carbon cement. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2019.117608

    Article  Google Scholar 

  5. Dutta D, Ghosh S (2019) The role of delayed water curing in improving the mechanical and microstructural properties of alkali activated fly ash based geopolymer paste blended with slag. World Eng. https://doi.org/10.1108/WJE-03-2018-0103

    Article  Google Scholar 

  6. Bechar S, Zerrouki D (2018) Effect of natural pozzolan on the fresh and hardened cement slurry properties for cementing oil well. World Eng. https://doi.org/10.1108/WJE-10-2017-0337

    Article  Google Scholar 

  7. Provis JL, van Deventer JSJ (2014) Alkali activated materials 13. Springer, Netherlands

    Book  Google Scholar 

  8. Zeghichi L, Benghazi Z (2011) Physical effects of natural pozzolana on alkali-activated slag cement. World Eng. https://doi.org/10.1260/1708-5284.8.2.141

    Article  Google Scholar 

  9. Hollanders S, Adriaens R, Skibsted J, Cizer Ö, Elsen J (2016) Pozzolanic reactivity of pure calcined clays. Appl Clay Sci. https://doi.org/10.1016/j.clay.2016.08.003

    Article  Google Scholar 

  10. Avet F, Scrivener K (2018) Investigation of the calcined kaolinite content on the hydration of Limestone Calcined Clay Cement (LC3). Cem Concr Res. https://doi.org/10.1016/j.cemconres.2018.02.016

    Article  Google Scholar 

  11. Avet F, Boehm-Courjault E, Scrivener K (2019) Investigation of C-A-S-H composition, morphology and density in Limestone Calcined Clay Cement (LC3). Cem Concr Res. https://doi.org/10.1016/j.cemconres.2018.10.011

    Article  Google Scholar 

  12. Siyal AA, Shamsuddin MR, Rabat NE, Zulfiqar M, Man Z, Low A (2019) Fly ash based geopolymer for the adsorption of anionic surfactant from aqueous solution. J Clean Prod. https://doi.org/10.1016/j.jclepro.2019.04.384

    Article  Google Scholar 

  13. Bagheri A, Nazari A, Sanjayan JG, Rajeev P, Duan W (2017) Fly ash-based boroaluminosilicate geopolymers: experimental and molecular simulations. Ceram Int. https://doi.org/10.1016/j.ceramint.2016.12.020

    Article  Google Scholar 

  14. Criado M, Fernández-Jiménez A, Palomo A (2007) Alkali activation of fly ash: Effect of the SiO2/Na2O ratio. Microporous Mesoporous Mater. https://doi.org/10.1016/j.micromeso.2007.02.055

    Article  Google Scholar 

  15. A. Fernández-Jiménez F, (1997) Alkali-activated slag cements: Kinetic studies. Cem Concr Res 27:359–368

    Article  Google Scholar 

  16. Angulo-Ramírez DE, Mejía de Gutiérrez R, Puertas F (2017) Alkali-activated Portland blast-furnace slag cement: Mechanical properties and hydration. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2017.02.092

    Article  Google Scholar 

  17. Bernal SA, San Nicolas R, Myers RJ, Mejía de Gutiérrez R, Puertas F, van Deventer JS, Provis JL (2014) MgO content of slag controls phase evolution and structural changes induced by accelerated carbonation in alkali-activated binders. Cem Concr Res. https://doi.org/10.1016/j.cemconres.2013.12.003

    Article  Google Scholar 

  18. Adu-Amankwah S, Black L, Skocek J, Ben Haha M, Zajac M (2018) Effect of sulfate additions on hydration and performance of ternary slag-limestone composite cements. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2017.12.165

    Article  Google Scholar 

  19. Schöler A, Lothenbach B, Winnefeld F, Zajac M (2015) Hydration of quaternary Portland cement blends containing blast-furnace slag, siliceous fly ash and limestone powder. Cement Concr Compos. https://doi.org/10.1016/j.cemconcomp.2014.10.001

    Article  Google Scholar 

  20. Wu M, Zhang Y, Jia Y, She W, Liu G, Wu Z, Sun W (2019) Influence of sodium hydroxide on the performance and hydration of lime-based low carbon cementitious materials. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2018.12.102

    Article  Google Scholar 

  21. Wu M, Zhang Y, Jia Y, She W, Liu G, Yang Y, Rong Z, Sun W (2019) The influence of chemical admixtures on the strength and hydration behavior of lime-based composite cementitious materials. Cement Concr Compos. https://doi.org/10.1016/j.cemconcomp.2019.05.008

    Article  Google Scholar 

  22. Wu M, Zhang Y, Jia Y, She W, Liu G, Yang Z, Zhang Y, Zhang W, Sun W (2019) Effects of sodium sulfate on the hydration and properties of lime-based low carbon cementitious materials. J Clean Prod. https://doi.org/10.1016/j.jclepro.2019.02.186

    Article  Google Scholar 

  23. Pacheco-Torgal F (2015) Handbook of alkali-activated cements. Elsevier, Mortars and Concretes

    Google Scholar 

  24. Provis JL (ed) (2008) Geopolymers: structure, processing, properties and industrical applications. Woodhead Publishing in materials, Woodhead Pub, Cambridge

    Google Scholar 

  25. Zhao Y, Qiu J, Zhang S, Guo Z, Ma Z, Sun X, Xing J (2020) Effect of sodium sulfate on the hydration and mechanical properties of lime-slag based eco-friendly binders. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2020.118603

    Article  Google Scholar 

  26. Giergiczny Z (2019) Fly ash and slag. Cem Concr Res. https://doi.org/10.1016/j.cemconres.2019.105826

    Article  Google Scholar 

  27. Özbay E, Erdemir M, Durmuş Hİ (2016) Utilization and efficiency of ground granulated blast furnace slag on concrete properties—a review. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2015.12.153

    Article  Google Scholar 

  28. Zhang X, Zhang S, Liu H, Zhao Y (2020) Disposal of mine tailings via geopolymerization. J Clean Prod. https://doi.org/10.1016/j.jclepro.2020.124756

    Article  Google Scholar 

  29. Keeley PM, Rowson NA, Johnson TP, Deegan DE (2017) The effect of the extent of polymerisation of a slag structure on the strength of alkali-activated slag binders. Int J Miner Process. https://doi.org/10.1016/j.minpro.2017.05.007

    Article  Google Scholar 

  30. Yum WS, Jeong Y, Song H, Oh JE (2018) Recycling of limestone fines using Ca(OH) 2 - and Ba(OH) 2 -activated slag systems for eco-friendly concrete brick production. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2018.07.112

    Article  Google Scholar 

  31. Yum WS, Jeong Y, Yoon S, Jeon D, Jun Y, Oh JE (2017) Effects of CaCl 2 on hydration and properties of lime(CaO)-activated slag/fly ash binder. Cement Concr Compos. https://doi.org/10.1016/j.cemconcomp.2017.09.001

    Article  Google Scholar 

  32. Dung NT, Hooper T, Unluer C (2019) Accelerating the reaction kinetics and improving the performance of Na2CO3-activated GGBS mixes. Cem Concr Res. https://doi.org/10.1016/j.cemconres.2019.105927

    Article  Google Scholar 

  33. Jeong Y, Oh JE, Jun Y, Park J, Ha J, Sohn SG (2016) Influence of four additional activators on hydrated-lime [Ca(OH) 2 ] activated ground granulated blast-furnace slag. Cement Concr Compos. https://doi.org/10.1016/j.cemconcomp.2015.10.007

    Article  Google Scholar 

  34. Walkley B, Provis JL (2019) Solid-state nuclear magnetic resonance spectroscopy of cements. Mater Today Adv. https://doi.org/10.1016/j.mtadv.2019.100007

    Article  Google Scholar 

  35. Le Saoût G, Ben Haha M, Winnefeld F, Lothenbach B (2011) Hydration degree of alkali-activated slags: a 29Si NMR study. J Am Ceram Soc. https://doi.org/10.1111/j.1551-2916.2011.04828.x

    Article  Google Scholar 

  36. Schilling PJ, Butler LG, Roy A, Eaton HC (1991) 29Si and 27Al MAS‐NMR of NaOH‐Activated Blast‐Furnace Slag. J Am Chem Soc 77(9)

  37. Jiang C, Li K, Zhang J, Qin Q, Liu Z, Sun M, Wang Z, Liang W (2018) Effect of MgO/Al2O3 ratio on the structure and properties of blast furnace slags: a molecular dynamics simulation. J Non-Cryst Solids. https://doi.org/10.1016/j.jnoncrysol.2018.06.043

    Article  Google Scholar 

  38. Kanehashi K (2017) Structural roles of calcium in alkaline and alkaline-earth aluminosilicate glasses by solid-state 43Ca, 17O and 27Al NMR. Solid State Nucl Magn Reson. https://doi.org/10.1016/j.ssnmr.2017.03.001

    Article  Google Scholar 

  39. Shimoda K, Tobu Y, Kanehashi K, Nemoto T, Saito K (2008) Total understanding of the local structures of an amorphous slag: perspective from multi-nuclear (29Si, 27Al, 17O, 25Mg, and 43Ca) solid-state NMR. J Non-Cryst Solids. https://doi.org/10.1016/j.jnoncrysol.2007.08.010

    Article  Google Scholar 

  40. Shimoda K, Tobu Y, Kanehashi K, Saito K, Nemoto T (2006) First evidence of multiple Ca sites in amorphous slag structure: multiple-quantum MAS NMR spectroscopy on calcium-43 at high magnetic field. Solid State Nucl Magn Reson. https://doi.org/10.1016/j.ssnmr.2006.05.002

    Article  Google Scholar 

  41. Jiang C, Li K, Zhang J, Liu Z, Niu L, Liang W, Sun M, Ma H, Wang Z (2019) The effect of CaO and MgO on the structure and properties of coal ash in the blast furnace: A molecular dynamics simulation and thermodynamic calculation. Chem Eng Sci. https://doi.org/10.1016/j.ces.2019.115226

    Article  Google Scholar 

  42. Jiang C, Zhang H, Xiong Z, Chen S, Li K, Zhang J, Liang W, Sun M, Wang Z, Wang L (2019) Molecular dynamics investigations on the effect of Na2O on the structure and properties of blast furnace slag under different basicity conditions. J Mol Liq. https://doi.org/10.1016/j.molliq.2019.112195

    Article  Google Scholar 

  43. Jiang C, Li K, Zhang J, Qin Q, Liu Z, Liang W, Sun M, Wang Z (2018) The effect of CaO(MgO) on the structure and properties of aluminosilicate system by molecular dynamics simulation. J Mol Liq. https://doi.org/10.1016/j.molliq.2018.07.123

    Article  Google Scholar 

  44. Li K, Khanna R, Bouhadja M, Zhang J, Liu Z, Su B, Yang T, Sahajwalla V, Singh CV, Barati M (2017) A molecular dynamic simulation on the factors influencing the fluidity of molten coke ash during alkalization with K2O and Na2O. Chem Eng J. https://doi.org/10.1016/j.cej.2016.11.011

    Article  Google Scholar 

  45. Newlands KC, Foss M, Matchei T, Skibsted J, Macphee DE (2017) Early stage dissolution characteristics of aluminosilicate glasses with blast furnace slag- and fly-ash-like compositions. J Am Ceram Soc. https://doi.org/10.1111/jace.14716

    Article  Google Scholar 

  46. Oey T, Kumar A, Pignatelli I, Yu Y, Neithalath N, Bullard JW, Bauchy M, Sant G (2017) Topological controls on the dissolution kinetics of glassy aluminosilicates. J Am Ceram Soc. https://doi.org/10.1111/jace.15122

    Article  Google Scholar 

  47. Mascaraque N, Januchta K, Frederiksen KF, Youngman RE, Bauchy M, Smedskjaer MM (2019) Structural dependence of chemical durability in modified aluminoborate glasses. J Am Ceram Soc. https://doi.org/10.1111/jace.15969

    Article  Google Scholar 

  48. Backhouse D (2017) A Study Of The Dissolution Of Nuclear Waste Glasses In Highly-Alkaline Conditions. The University of Sheffield

  49. Morrow CP, Nangia S, Garrison BJ (2009) Ab initio investigation of dissolution mechanisms in aluminosilicate minerals. J Phys Chem A. https://doi.org/10.1021/jp8079099

    Article  Google Scholar 

  50. P.K.Abraitis, F.R.Livens, J.E.Monteith, J.S.Small, D.P.Trivedi, D.J.Vaughan, R.A.Wogelius (2000) The kinetics and mechanisms of simulated British Magnox waste glass dissolution as a function of pH, silicic acid activity and time in low temperature aqueous systems. Applied Geochemistry 15

  51. Pierce EM, Rodriguez EA, Calligan LJ, Shaw WJ, Pete McGrail B (2008) An experimental study of the dissolution rates of simulated aluminoborosilicate waste glasses as a function of pH and temperature under dilute conditions. Appl Geochem. https://doi.org/10.1016/j.apgeochem.2008.05.006

    Article  Google Scholar 

  52. Duxson P, Provis JL (2008) Designing precursors for geopolymer cements. J Am Ceram Soc. https://doi.org/10.1111/j.1551-2916.2008.02787.x

    Article  Google Scholar 

  53. Berger G, Claparols C, Guy C, Daux V (1994) Dissolution rate of a basalt glass in silica-rich solutions: Implications for long-term alteration. Geochim Cosmochim Acta. https://doi.org/10.1016/0016-7037(94)90218-6

    Article  Google Scholar 

  54. Leturcq G, Berger G, Advocat T, Vernaz E (1999) Initial and long-term dissolution rates of aluminosilicate glasses enriched with Ti, Zr and Nd. Chem Geol, https://doi.org/10.1016/S0009-2541(99)00055-8

  55. Jégou C, Gin S, Larché F (2000) Alteration kinetics of a simplified nuclear glass in an aqueous medium: effects of solution chemistry and of protective gel properties on diminishing the alteration rate. J Nucl Mater 280:216–229

    Article  Google Scholar 

  56. Gin S, Neill L, Fournier M, Frugier P, Ducasse T, Tribet M, Abdelouas A, Parruzot B, Neeway J, Wall N (2016) The controversial role of inter-diffusion in glass alteration. Chem Geol. https://doi.org/10.1016/j.chemgeo.2016.07.014

    Article  Google Scholar 

  57. Geisler T, Nagel T, Kilburn MR, Janssen A, Icenhower JP, Fonseca RO, Grange M, Nemchin AA (2015) The mechanism of borosilicate glass corrosion revisited. Geochim Cosmochim Acta. https://doi.org/10.1016/j.gca.2015.02.039

    Article  Google Scholar 

  58. Neeway JJ, Parruzot BP, Bonnett JF, Reiser JT, Kerisit SN, Ryan JV, Crum JV (2020) Acceleration of glass alteration rates induced by zeolite seeds at controlled pH. Appl Geochem. https://doi.org/10.1016/j.apgeochem.2019.104515

    Article  Google Scholar 

  59. Li C, Sun H, Li L (2010) A review: the comparison between alkali-activated slag (Si+Ca) and metakaolin (Si+Al) cements. Cem Concr Res. https://doi.org/10.1016/j.cemconres.2010.03.020

    Article  Google Scholar 

  60. Jianjian Z, Guowen S, Caihui W, Ying Z, Pengshuo W, Na Y (2020) Activation effects and micro quantitative characterization of high-volume ground granulated blast furnace slag in cement-based composites. Cement Concr Compos. https://doi.org/10.1016/j.cemconcomp.2020.103556

    Article  Google Scholar 

  61. Rafat Siddique PC (ed) (2018) Waste and supplementary cementitious materials in concrete. Elsevier

  62. Haha MB, Lothenbach B, Le Saout G, Winnefeld F (2012) Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag—part II: effect of Al2O3. Cem Concr Res. https://doi.org/10.1016/j.cemconres.2011.08.005

    Article  Google Scholar 

  63. Haha MB, Lothenbach B, Le Saout G, Winnefeld F (2011) Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag—Part I: effect of MgO. Cem Concr Res. https://doi.org/10.1016/j.cemconres.2011.05.002

    Article  Google Scholar 

  64. Kinnunen P, Sreenivasan H, Cheeseman CR, Illikainen M (2019) Phase separation in alumina-rich glasses to increase glass reactivity for low-CO2 alkali-activated cements. J Clean Prod. https://doi.org/10.1016/j.jclepro.2018.12.123

    Article  Google Scholar 

  65. Schöler A, Winnefeld F, Haha MB, Lothenbach B (2017) The effect of glass composition on the reactivity of synthetic glasses. J Am Ceram Soc. https://doi.org/10.1111/jace.14759

    Article  Google Scholar 

  66. Huang C, Cormack AN (1991) Structural differences and phase separation in alkali silicate glasses. J Chem Phys. https://doi.org/10.1063/1.460814

    Article  Google Scholar 

  67. Li Y, Sun H, Liu X, Cui Z (2009) Effect of phase separation structure on cementitious reactivity of blast furnace slag. Sci China Ser E-Technol Sci https://doi.org/10.1007/s11431-008-0239-x

  68. Pignatelli I, Kumar A, Bauchy M, Sant G (2016) Topological Control on Silicates’ Dissolution Kinetics. Langmuir ACS J Surf Colloids. https://doi.org/10.1021/acs.langmuir.6b00359

    Article  Google Scholar 

  69. Mascaraque N, Bauchy M, Smedskjaer MM (2017) Correlating the network topology of oxide glasses with their chemical durability. J Phys Chem B. https://doi.org/10.1021/acs.jpcb.6b11371

    Article  Google Scholar 

  70. Bauchy M (2019) Deciphering the atomic genome of glasses by topological constraint theory and molecular dynamics: a review. Comput Mater Sci. https://doi.org/10.1016/j.commatsci.2018.12.004

    Article  Google Scholar 

  71. Liu H, Du T, Krishnan NA, Li H, Bauchy M (2019) Topological optimization of cementitious binders: advances and challenges. Cement Concr Compos. https://doi.org/10.1016/j.cemconcomp.2018.08.002

    Article  Google Scholar 

  72. Mauro JC (2011) Topological constraint theory of glass. Am Ceram Soc Bull 90:31–37

    CAS  Google Scholar 

  73. Smedskjaer MM, Mauro JC, Youngman RE, Hogue CL, Potuzak M, Yue Y (2011) Topological principles of borosilicate glass chemistry. J Phys Chem B. https://doi.org/10.1021/jp208796b

    Article  Google Scholar 

  74. Zachariasen WH (1932) The atomic arrangement in glass. J Am Chem Soc 54:3841–3851

    Article  CAS  Google Scholar 

  75. JC Phillips M, (1985) Constraint theory, vector percolation and glass formation. Solid State Commun 53(8):699–702

    Article  Google Scholar 

  76. Ding Z, Wilkinson CJ, Zheng J, Lin Y, Liu H, Shen J, Kim SH, Yue Y, Ren J, Mauro JC, Zheng Q (2020) Topological understanding of the mixed alkaline earth effect in glass. J Non-Cryst Solids. https://doi.org/10.1016/j.jnoncrysol.2019.119696

    Article  Google Scholar 

  77. Bauchy M (2014) Structural, vibrational, and elastic properties of a calcium aluminosilicate glass from molecular dynamics simulations: the role of the potential. J Chem Phys. https://doi.org/10.1063/1.4886421

    Article  Google Scholar 

  78. Krishnan NMA, Wang B, Falzone G, Le Pape Y, Neithalath N, Pilon L, Bauchy M, Sant G (2016) Confined water in layered silicates: the origin of anomalous thermal expansion behavior in calcium-silicate-hydrates. ACS Appl Mater Interfaces. https://doi.org/10.1021/acsami.6b11587

    Article  Google Scholar 

  79. Bauchy M, Wang M, Yu Y, Wang B, Krishnan NMA, Masoero E, Ulm F-J, Pellenq R (2017) Topological control on the structural relaxation of atomic networks under stress. Phys Rev Lett. https://doi.org/10.1103/PhysRevLett.119.035502

    Article  Google Scholar 

  80. Liu H, Zhang T, Anoop Krishnan NM, Smedskjaer MM, Ryan JV, Gin S, Bauchy M (2019) Predicting the dissolution kinetics of silicate glasses by topology-informed machine learning. NPJ Mater Degrad. https://doi.org/10.1038/s41529-019-0094-1

    Article  Google Scholar 

  81. Mascaraque N, Bauchy M, Fierro JLG, Rzoska SJ, Bockowski M, Smedskjaer MM (2017) Dissolution kinetics of hot compressed oxide glasses. J Phys Chem B. https://doi.org/10.1021/acs.jpcb.7b04535

    Article  Google Scholar 

  82. Yu Y, Krishnan NMA, Smedskjaer MM, Sant G, Bauchy M (2018) The hydrophilic-to-hydrophobic transition in glassy silica is driven by the atomic topology of its surface. J Chem Phys. https://doi.org/10.1063/1.5010934

    Article  Google Scholar 

  83. Bernal SA, Provis JL, Rose V, Mejía de Gutierrez R (2011) Evolution of binder structure in sodium silicate-activated slag-metakaolin blends. Cement Concr Compos. https://doi.org/10.1016/j.cemconcomp.2010.09.004

    Article  Google Scholar 

  84. Bernal SA, Provis JL, Walkley B, San Nicolas R, Gehman JD, Brice DG, Kilcullen AR, Duxson P, van Deventer JS (2013) Gel nanostructure in alkali-activated binders based on slag and fly ash, and effects of accelerated carbonation. Cem Concr Res. https://doi.org/10.1016/j.cemconres.2013.06.007

    Article  Google Scholar 

  85. Ben Haha M, Le Saout G, Winnefeld F, Lothenbach B (2011) Influence of activator type on hydration kinetics, hydrate assemblage and microstructural development of alkali activated blast-furnace slags. Cem Concr Res. https://doi.org/10.1016/j.cemconres.2010.11.016

    Article  Google Scholar 

  86. Jeong Y, Hargis CW, Chun S-C, Moon J (2018) The effect of water and gypsum content on strätlingite formation in calcium sulfoaluminate-belite cement pastes. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2018.01.153

    Article  Google Scholar 

  87. Okoronkwo MU, Glasser FP (2016) Stability of strätlingite in the CASH system. Mater Struct. https://doi.org/10.1617/s11527-015-0789-x

    Article  Google Scholar 

  88. Okoronkwo MU, Glasser FP (2016) Strätlingite: compatibility with sulfate and carbonate cement phases. Mater Struct. https://doi.org/10.1617/s11527-015-0740-1

    Article  Google Scholar 

  89. Rinaldi R, Sacerdoti M, Passaglia E (1990) Strätlingite: crystal structure, chemistry, and a reexamination of its polytpye vertumnite. EJM. https://doi.org/10.1127/ejm/2/6/0841

    Article  Google Scholar 

  90. Walkley B, San Nicolas R, Sani M-A, Bernal SA, van Deventer JS, Provis JL (2017) Structural evolution of synthetic alkali-activated CaO-MgO-Na 2 O-Al 2 O 3 -SiO 2 materials is influenced by Mg content. Cem Concr Res. https://doi.org/10.1016/j.cemconres.2017.05.006

    Article  Google Scholar 

  91. Schilling PJ, Butler LG, Roy A, Eaton HC (1994) 29Si and 27Al MAS-NMR of NaOH-activated blast-furnace slag. J Am Chem Soc 77(9):2363–2368

    CAS  Google Scholar 

  92. Ana Fernandez-Jimenez FP (2003) Structure of calcium silicate hydrates formed in alkaline‐activated slag: influence of the type of alkaline activator. J Am Ceram Soc 86(8)

  93. Bonaccorsi E, Merlino S, Kampf AR (2005) The crystal structure of tobermorite 14 A (Plombierite), a C-S-H phase. J Am Ceram Soc. https://doi.org/10.1111/j.1551-2916.2005.00116.x

    Article  Google Scholar 

  94. Puertas F, Palacios M, Manzano H, Dolado JS, Rico A, Rodríguez J (2011) A model for the C-A-S-H gel formed in alkali-activated slag cements. J Eur Ceram Soc. https://doi.org/10.1016/j.jeurceramsoc.2011.04.036

    Article  Google Scholar 

  95. Bonk F, Schneider J, Cincotto MA, Panepucci H (2003) Characterization by multinuclear high-resolution NMR of hydration products in activated blast-furnace slag pastes. J Am Ceram Soc 86(10):1712–1719

    Article  CAS  Google Scholar 

  96. Myers RJ, Bernal SA, San Nicolas R, Provis JL (2013) Generalized structural description of calcium-sodium aluminosilicate hydrate gels: the cross-linked substituted tobermorite model. Langmuir. https://doi.org/10.1021/la4000473

    Article  Google Scholar 

  97. Alexander M, Bertron A, de Belie N (2013) Performance of cement-based materials in aggressive aqueous environments 10. Springer, Netherlands, Dordrecht

    Book  Google Scholar 

  98. Myers RJ, Lothenbach B, Bernal SA, Provis JL (2015) Thermodynamic modelling of alkali-activated slag cements. Appl Geochem. https://doi.org/10.1016/j.apgeochem.2015.06.006

    Article  Google Scholar 

  99. Morandeau AE, White CE (2015) Role of magnesium-stabilized amorphous calcium carbonate in mitigating the extent of carbonation in alkali-activated slag. Chem Mater. https://doi.org/10.1021/acs.chemmater.5b02382

    Article  Google Scholar 

  100. Politi Y, Batchelor DR, Zaslansky P, Chmelka BF, Weaver JC, Sagi I, Weiner S, Addadi L (2010) Role of magnesium ion in the stabilization of biogenic amorphous calcium carbonate: a structure−function investigation. Chem Mater. https://doi.org/10.1021/cm902674h

    Article  Google Scholar 

  101. Loste E, Wilson RM, Seshadri R, Meldrum FC (2003) The role of magnesium in stabilising amorphous calcium carbonate and controlling calcite morphologies. J Cryst Growth. https://doi.org/10.1016/S0022-0248(03)01153-9

    Article  Google Scholar 

  102. Renaudin G, Russias J, Leroux F, Frizon F, Cau-Dit-Coumes C (2009) Structural characterization of C-S–H and C–A–S–H samples—Part I: Long-range order investigated by Rietveld analyses. J Solid State Chem. https://doi.org/10.1016/j.jssc.2009.09.026

    Article  Google Scholar 

  103. Renaudin G, Russias J, Leroux F, Cau-Dit-Coumes C, Frizon F (2009) Structural characterization of C-S–H and C–A–S–H samples—Part II: Local environment investigated by spectroscopic analyses. J Solid State Chem. https://doi.org/10.1016/j.jssc.2009.09.024

    Article  Google Scholar 

  104. Gong K, White CE (2016) Impact of chemical variability of ground granulated blast-furnace slag on the phase formation in alkali-activated slag pastes. Cem Concr Res. https://doi.org/10.1016/j.cemconres.2016.09.003

    Article  Google Scholar 

  105. Peys A, White CE, Olds D, Rahier H, Blanpain B, Pontikes Y (2018) Molecular structure of CaO–FeO x –SiO 2 glassy slags and resultant inorganic polymer binders. J Am Ceram Soc. https://doi.org/10.1111/jace.15880

    Article  Google Scholar 

  106. Abdolhosseini Qomi MJ, Krakowiak KJ, Bauchy M, Stewart KL, Shahsavari R, Jagannathan D, Brommer DB, Baronnet A, Buehler MJ, Yip S, Ulm F-J, van Vliet KJ, Pellenq RJ-M (2014) Combinatorial molecular optimization of cement hydrates. Nat Commun. https://doi.org/10.1038/ncomms5960

    Article  Google Scholar 

  107. Zhu X, Zhang M, Yang K, Yu L, Yang C (2020) Setting behaviours and early-age microstructures of alkali-activated ground granulated blast furnace slag (GGBS) from different regions in China. Cement Concr Compos. https://doi.org/10.1016/j.cemconcomp.2020.103782

    Article  Google Scholar 

  108. Jeong Y, Park H, Jun Y, Jeong JH, Oh JE (2016) Influence of slag characteristics on strength development and reaction products in a CaO-activated slag system. Cement Concr Compos. https://doi.org/10.1016/j.cemconcomp.2016.06.005

    Article  Google Scholar 

  109. Burciaga-Díaz O, Betancourt-Castillo I (2018) Characterization of novel blast-furnace slag cement pastes and mortars activated with a reactive mixture of MgO-NaOH. Cem Concr Res. https://doi.org/10.1016/j.cemconres.2018.01.002

    Article  Google Scholar 

  110. Kang S-H, Kwon Y-H, Hong S-G, Chun S, Moon J (2019) Hydrated lime activation on byproducts for eco-friendly production of structural mortars. J Clean Prod. https://doi.org/10.1016/j.jclepro.2019.05.313

    Article  Google Scholar 

  111. Kovtun M, Kearsley EP, Shekhovtsova J (2015) Chemical acceleration of a neutral granulated blast-furnace slag activated by sodium carbonate. Cem Concr Res. https://doi.org/10.1016/j.cemconres.2015.02.014

    Article  Google Scholar 

  112. Burciaga-Díaz O, Escalante-García JI (2013) Structure, mechanisms of reaction, and strength of an alkali-activated blast-furnace slag. J Am Ceram Soc. https://doi.org/10.1111/jace.12620

    Article  Google Scholar 

  113. Bernal SA (2016) Advances in near-neutral salts activation of blast furnace slags. RILEM Tech Lett. https://doi.org/10.21809/rilemtechlett.2016.8

    Article  Google Scholar 

  114. Rashad AM (2013) A comprehensive overview about the influence of different additives on the properties of alkali-activated slag—a guide for Civil Engineer. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2013.04.011

    Article  Google Scholar 

  115. Yuan B, Yu QL, Brouwers H (2017) Time-dependent characterization of Na 2 CO 3 activated slag. Cement Concr Compos. https://doi.org/10.1016/j.cemconcomp.2017.09.005

    Article  Google Scholar 

  116. Park H, Jeong Y, Jun Y, Jeong J-H, Oh JE (2016) Strength enhancement and pore-size refinement in clinker-free CaO-activated GGBFS systems through substitution with gypsum. Cement Concr Compos. https://doi.org/10.1016/j.cemconcomp.2016.02.008

    Article  Google Scholar 

  117. Kim MS, Jun Y, Lee C, Oh JE (2013) Use of CaO as an activator for producing a price-competitive non-cement structural binder using ground granulated blast furnace slag. Cem Concr Res. https://doi.org/10.1016/j.cemconres.2013.09.011

    Article  Google Scholar 

  118. Hangxing D, Shiyu Z, Xiaolong Z, Zhaohao Z, Yingliang Z (2021) Low carbon cementitious composites: Calcined quarry dust modified lime/sodium sulfate-activated slag. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2021.122521

    Article  Google Scholar 

  119. Gu K, Jin F, Al-Tabbaa A, Shi B, Liu J (2014) Mechanical and hydration properties of ground granulated blast furnace slag pastes activated with MgO–CaO mixtures. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2014.07.032

    Article  Google Scholar 

  120. Yang T, Zhang Z, Zhu H, Zhang W, Gao Y, Zhang X, Wu Q (2019) Effects of calcined dolomite addition on reaction kinetics of one-part sodium carbonate-activated slag cements. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2019.03.245

    Article  Google Scholar 

  121. Bondar D, Ma Q, Soutsos M, Basheer M, Provis JL, Nanukuttan S (2018) Alkali activated slag concretes designed for a desired slump, strength and chloride diffusivity. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2018.09.124

    Article  Google Scholar 

  122. Yang T, Zhang Z, Zhang F, Gao Y, Wu Q (2020) Chloride and heavy metal binding capacities of hydrotalcite-like phases formed in greener one-part sodium carbonate-activated slag cements. J Clean Prod. https://doi.org/10.1016/j.jclepro.2020.120047

    Article  Google Scholar 

Download references

Acknowledgements

The supports of Key Research and Development Project of Liaoning, 2020JH1/10300005; National Natural Science Foundation of China, 51774066; The Fundamental Research Funds for the Central Universities, N2001024; Innovation Program for College Students, Northeastern University, 210069 are gratefully acknowledged. Besides, the authors would like to thank Fan Yao from Shiyanjia Lab (www.shiyanjia.com) for the editing of English language.

.

Funding

Author Jingping Qiu has received research grants from National Natural Science Foundation of China. The author Jingping Qiu has an on-going collaboration with Yingliang Zhao, Xiaogang Sun, and Jun Xing

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingliang Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest

Additional information

Handling Editor: M. Grant Norton.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, X., Zhao, Y., Qiu, J. et al. Review: alkali-activated blast furnace slag for eco-friendly binders. J Mater Sci 57, 1599–1622 (2022). https://doi.org/10.1007/s10853-021-06682-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06682-8

Navigation