Skip to main content
Log in

A combined theoretical and experimental investigation of the valorization of mechanical and thermal properties of the fly ash-reinforced polypropylene hybrid composites

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Fly ash (FA) particles were surface modified with cetyltrimethylammonium bromide (Ctab) and hybridized with graphene oxide (GO) and carboxymethyl cellulose (CMC) separately to increase interfacial adhesion with the polypropylene (PP) matrix. For a 5 wt.% CMC-hybridized FA, and Ctab-treated FA-filled PP composite, the highest increase in tensile (13% and 7%) and flexural (30% and 25%) strength was observed compared to pristine PP. The functionalization on FA surface was confirmed by ATR-IR analysis. Morphological study using FE-SEM showed that FA particles were successfully carried on to CMC and GO surfaces. An increment in melting temperature by ~ 3 °C was obtained. Improved thermal stability of the composites was confirmed from TGA analysis. The molecular dynamics (MD) simulations were carried out for all the three modification and it predicted highest interfacial interaction in case of Ctab-FA-reinforced PP composite.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Scheme 1
Figure 3
Figure 4
Scheme 2
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

Abbreviations

APTES:

(3-Aminopropyl) triethoxysilane

Ctab-FA:

Ctab-treated FA reinforcement

GO-FA:

GO-hybridized FA reinforcement

CMC-FA:

CMC-hybridized FA reinforcement

X c :

Crystallinity

SEBS:

Styrene ethylene butylene styrene

MA:

Maleic anhydride

MA-g-SEBS:

MA-grafted SEBS

References

  1. Tongia R, Gross S (2019) Coal in India: Adjusting to transition

  2. Yousuf A, Manzoor SO, Youssouf M et al (2020) Fly ash: production and utilization in India-an overview. J Mater Env Sci 11:911–921

    CAS  Google Scholar 

  3. Yang S, Tian J, Bian X, Wu Y (2020) High performance NBR/fly ash composites prepared by an environment-friendly method. Compos Sci Technol 186:107909. https://doi.org/10.1016/j.compscitech.2019.107909

    Article  CAS  Google Scholar 

  4. Choi SK, Lee S, Song YK, Moon HS (2002) Leaching characteristics of selected Korean fly ashes and its implications for the groundwater composition near the ash disposal mound. Fuel 81:1083–1090. https://doi.org/10.1016/S0016-2361(02)00006-6

    Article  CAS  Google Scholar 

  5. Sushil S, Batra VS (2006) Analysis of fly ash heavy metal content and disposal in three thermal power plants in India. Fuel 85:2676–2679. https://doi.org/10.1016/j.fuel.2006.04.031

    Article  CAS  Google Scholar 

  6. Jain M (2014) Dwivedi A (2014) Fly ash – waste management and overview: A Review Fly ash – waste management and overview: A Review. Recent Res Sci Technol 6(1):30–35

    Google Scholar 

  7. Patra KC, Rautray TR, Nayak P (2012) Analysis of grains grown on fly ash treated soils. Appl Radiat Isot 70:1797–1802. https://doi.org/10.1016/j.apradiso.2012.03.037

    Article  CAS  Google Scholar 

  8. Nyale SM, Eze CP, Akinyeye RO et al (2014) The leaching behaviour and geochemical fractionation of trace elements in hydraulically disposed weathered coal fly ash. J Environ Sci Heal - Part A Toxic/Hazardous Subst Environ Eng 49:233–242. https://doi.org/10.1080/10934529.2013.838929

    Article  CAS  Google Scholar 

  9. Wong J (1995) The production of artificial soil mix from coal fly ash and sewage sludge. Environ Technol (United Kingdom) 16:741–751. https://doi.org/10.1080/09593331608616313

    Article  CAS  Google Scholar 

  10. Su DC, Wong JWC (2002) The growth of corn seedlings in alkaline coal fly ash stabilized sewage sludge. Water Air Soil Pollut 133:1–13. https://doi.org/10.1023/A:1012998530689

    Article  CAS  Google Scholar 

  11. Jiang RF, Yang CG, Su DC, Wong JWC (1999) Coal fly ash and lime stabilized biosolids as an ameliorant for boron deficient acidic soils. Environ Technol (United Kingdom) 20:645–649. https://doi.org/10.1080/09593332008616860

    Article  CAS  Google Scholar 

  12. Querol X, Moreno N, Umaña JC, Alastuey A et al (2002) Synthesis of zeolites from coal fly ash: an overview. Int J coal Geol 50:413–423

    Article  CAS  Google Scholar 

  13. González A, Navia R, Moreno N (2009) Fly ashes from coal and petroleum coke combustion: current and innovative potential applications. Waste Manag Res 27:976–987

    Article  Google Scholar 

  14. Erol M, Küçükbayrak S, Ersoy-Meriçboyu A (2008) Characterization of sintered coal fly ashes. Fuel 87:1334–1340. https://doi.org/10.1016/j.fuel.2007.07.002

    Article  CAS  Google Scholar 

  15. Bhattacharjee U, Kandpal TC (2002) Potential of fly ash utilisation in India. Energy 27:151–166. https://doi.org/10.1016/S0360-5442(01)00065-2

    Article  CAS  Google Scholar 

  16. Wang S (2008) Application of solid ash based catalysts in heterogeneous catalysis. Environ Sci Technol 42:7055–7063

    Article  CAS  Google Scholar 

  17. Yang S, Tian J, Bian X, et al High performance NBR/fly ash composites prepared by an environment-friendly method. Elsevier

  18. Sengupta S, Ray D, Mukhopadhyay A (2013) Sustainable materials: Value-added composites from recycled polypropylene and fly ash using a green coupling agent. ACS Sustain Chem Eng 1:574–584. https://doi.org/10.1021/sc3000948

    Article  CAS  Google Scholar 

  19. Sengupta S, Pal K, Ray D, Mukhopadhyay A (2011) Furfuryl palmitate coated fly ash used as filler in recycled polypropylene matrix composites. Compos Part B Eng 42:1834–1839. https://doi.org/10.1016/j.compositesb.2011.06.021

    Article  CAS  Google Scholar 

  20. Sridhar V, Xiu ZZ, Xu D et al (2009) Fly ash reinforced thermoplastic vulcanizates obtained from waste tire powder. Waste Manag 29:1058–1066. https://doi.org/10.1016/j.wasman.2008.08.013

    Article  CAS  Google Scholar 

  21. Kuźnia M, Magiera A, Pielichowska K et al (2019) Fluidized bed combustion fly ash as filler in composite polyurethane materials. Waste Manag 92:115–123. https://doi.org/10.1016/j.wasman.2019.05.012

    Article  CAS  Google Scholar 

  22. Goh CK, Valavan SE, Low TK, Tang LH (2016) Effects of different surface modification and contents on municipal solid waste incineration fly ash/epoxy composites. Waste Manag 58:309–315. https://doi.org/10.1016/j.wasman.2016.05.027

    Article  CAS  Google Scholar 

  23. Yang S, Liang P, Hua K et al (2018) Preparation of carboxylated nitrile butadiene rubber/fly ash composites by in-situ carboxylate reaction. Compos Sci Technol 167:294–300. https://doi.org/10.1016/j.compscitech.2018.08.007

    Article  CAS  Google Scholar 

  24. Yang S, Liang P, Peng X et al (2018) Improvement in mechanical properties of SBR/Fly ash composites by in-situ grafting-neutralization reaction. Chem Eng J 354:849–855. https://doi.org/10.1016/j.cej.2018.08.112

    Article  CAS  Google Scholar 

  25. Bharath Kumar BR, Doddamani M, Zeltmann SE et al (2016) Effect of particle surface treatment and blending method on flexural properties of injection-molded cenosphere/HDPE syntactic foams. J Mater Sci 51:3793–3805. https://doi.org/10.1007/s10853-015-9697-2

    Article  CAS  Google Scholar 

  26. Maurya AK, Gogoi R, Manik G (2021) Mechano-chemically activated fly-ash and sisal fiber reinforced PP hybrid composite with enhanced mechanical properties. Cellulose. https://doi.org/10.1007/s10570-021-03995-4

    Article  Google Scholar 

  27. Filho AS, Parveen S, Rana S et al (2021) Micro-structure and mechanical properties of microcrystalline cellulose-sisal fiber reinforced cementitious composites developed using cetyltrimethylammonium bromide as the dispersing agent. Cellulose. https://doi.org/10.1007/s10570-020-03641-5

    Article  Google Scholar 

  28. Maurya AK, Gogoi R, Manik G (2021) Study of the Moisture Mitigation and Toughening Effect of Fly-ash Particles on Sisal Fiber-Reinforced Hybrid Polypropylene Composites. J Polym Environ. https://doi.org/10.1007/s10924-021-02043-3

    Article  Google Scholar 

  29. Pettignano A, Charlot A, Fleury E (2019) Solvent-Free Synthesis of Amidated Carboxymethyl Cellulose Derivatives: Effect on the Thermal Properties. Polymers (Basel) 11:1227. https://doi.org/10.3390/polym11071227

    Article  CAS  Google Scholar 

  30. Joseph S, Bambola VA, Sherhtukade VV, Mahanwar PA (2011) Effect of flyash content, particle size of flyash, and type of silane coupling agents on the properties of recycled poly (ethylene terephthalate)/flyash composites. J Appl Polym Sci 119:201–208

    Article  CAS  Google Scholar 

  31. Gogoi R, Manik G (2021) Development of thermally conductive and high-specific strength polypropylene composites for thermal management applications in automotive. Polym Compos 42:1945–1960. https://doi.org/10.1002/pc.25947

    Article  CAS  Google Scholar 

  32. Gogoi R, Manik G, Arun B (2019) High specific strength hybrid polypropylene composites using carbon fibre and hollow glass microspheres: Development, characterization and comparison with empirical models. Compos Part B Eng 173:106875. https://doi.org/10.1016/j.compositesb.2019.05.086

    Article  CAS  Google Scholar 

  33. Cui YH, Wang XX, Li ZQ, Tao J (2010) Fabrication and properties of nano-ZnO/glass-fiber-reinforced polypropylene composites. J Vinyl Addit Technol 16:189–194. https://doi.org/10.1002/vnl.20231

    Article  CAS  Google Scholar 

  34. Material StudioTM, by Dassault Systemes BIOVIA, UK (Accelrys®), License purchased by IIT Roorkee.

  35. Gogoi R, Sethi SK, Manik G (2021) Surface functionalization and CNT coating induced improved interfacial interactions of carbon fiber with polypropylene matrix: a molecular dynamics study. Appl Surf Sci. https://doi.org/10.1016/j.apsusc.2020.148162

    Article  Google Scholar 

  36. Sethi SK, Manik G (2018) Recent progress in super hydrophobic/hydrophilic self-cleaning surfaces for various industrial applications: a review. Polym Plast Technol Eng 57:1932–1952. https://doi.org/10.1080/03602559.2018.1447128

    Article  CAS  Google Scholar 

  37. Nosé S (1984) A unified formulation of the constant temperature molecular dynamics methods. J Chem Phys 81:511–519. https://doi.org/10.1063/1.447334

    Article  Google Scholar 

  38. Sethi SK, Singh M, Manik G (2020) A multi-scale modeling and simulation study to investigate the effect of roughness of a surface on its self-cleaning performance. Mol Syst Des Eng 5:1277–1289. https://doi.org/10.1039/d0me00068j

    Article  CAS  Google Scholar 

  39. Sethi SK, Soni L, Shankar U et al (2020) A molecular dynamics simulation study to investigate poly(vinyl acetate)-poly(dimethyl siloxane) based easy-clean coating: An insight into the surface behavior and substrate interaction. J Mol Struct 1202:127342. https://doi.org/10.1016/j.molstruc.2019.127342

    Article  CAS  Google Scholar 

  40. Sethi SK, Manik G (2021) A combined theoretical and experimental investigation on the wettability of MWCNT filled PVAc-g-PDMS easy-clean coating. Prog Org Coatings 151:106092. https://doi.org/10.1016/j.porgcoat.2020.106092

    Article  CAS  Google Scholar 

  41. Sharma R, Maiti SN (2014) Effects of crystallinity of PP and flexibility of SEBS-g-MA copolymer on the mechanical properties of PP/SEBS-g-MA blends. Polym - Plast Technol Eng 53:229–238. https://doi.org/10.1080/03602559.2013.843706

    Article  CAS  Google Scholar 

  42. Wang X, Feng W, Li H, Ruckenstein E (2001) Optimum toughening via a bicontinuous blending: toughening of PPO with SEBS and SEBS-g-maleic anhydride. Polymer (Guildf) 43:37–43. https://doi.org/10.1016/S0032-3861(01)00601-2

    Article  Google Scholar 

  43. Mozgawa W, Król M, Dyczek J, Deja J (2014) Investigation of the coal fly ashes using IR spectroscopy. Spectrochim Acta - Part A Mol Biomol Spectrosc 132:889–894. https://doi.org/10.1016/j.saa.2014.05.052

    Article  CAS  Google Scholar 

  44. Jeyageetha CJ, Kumar SP (2013) Study of SEM/EDXS and FTIR for fly ash to determine the chemical changes of ash in marine environment

  45. Smidt E, Böhm K, Schwanninger M The Application of FT-IR Spectroscopy in Waste Management

  46. Liu Y, Zeng F, Sun B et al (2019) Structural characterizations of aluminosilicates in two types of fly ash samples from Shanxi Province. North China Minerals 9:358. https://doi.org/10.3390/min9060358

    Article  CAS  Google Scholar 

  47. Hahn A, Vogel H, Andó S et al (2018) Using Fourier transform infrared spectroscopy to determine mineral phases in sediments. Sediment Geol 375:27–35. https://doi.org/10.1016/j.sedgeo.2018.03.010

    Article  Google Scholar 

  48. Deepthi MV, Sharma M, Sailaja RRN et al (2010) Mechanical and thermal characteristics of high density polyethylene-fly ash Cenospheres composites. Mater Des 31:2051–2060. https://doi.org/10.1016/j.matdes.2009.10.014

    Article  CAS  Google Scholar 

  49. Zhou J, Xia K, Liu X et al (2021) Utilization of cationic polymer-modified fly ash for dye wastewater treatment. Clean Technol Environ Policy 23:1273–1282. https://doi.org/10.1007/s10098-020-02019-2

    Article  CAS  Google Scholar 

  50. Fang J, Zhang L, Sutton D et al (2012) Needleless melt-electrospinning of polypropylene nanofibres. J Nanomater. https://doi.org/10.1155/2012/382639

    Article  Google Scholar 

  51. Jain D, Mishra M, Rani A (2012) Synthesis and characterization of novel aminopropylated fly ash catalyst and its beneficial application in base catalyzed Knoevenagel condensation reaction. Fuel Process Technol 95:119–126. https://doi.org/10.1016/j.fuproc.2011.12.005

    Article  CAS  Google Scholar 

  52. Dharmalingam U, Dhanasekaran M, Balasubramanian K, Kandasamy R (2015) Surface treated fly ash filled modified epoxy composites. Polimeros 25:540–546. https://doi.org/10.1590/0104-1428.2152

    Article  CAS  Google Scholar 

  53. Patil AG, Anandhan S (2015) Influence of planetary ball milling parameters on the mechano-chemical activation of fly ash. Powder Technol 281:151–158. https://doi.org/10.1016/j.powtec.2015.04.078

    Article  CAS  Google Scholar 

  54. Li JC, Zheng LF, Sha XH, Chen P (2020) Microstructural and mechanical characteristics of graphene oxide-fly ash cenosphere hybrid reinforced epoxy resin composites. J Appl Polym Sci 137:1–8. https://doi.org/10.1002/app.47173

    Article  CAS  Google Scholar 

  55. Ji Y, Yang X, Ji Z et al (2020) DFT-Calculated IR Spectrum Amide I, II, and III Band Contributions of N-Methylacetamide Fine Components. ACS Omega 5:8572–8578. https://doi.org/10.1021/acsomega.9b04421

    Article  CAS  Google Scholar 

  56. Gogoi R, Manik G (2021) Mechanical Properties of Wood Polymer Composites. Springer, Singapore, pp 113–136. https://doi.org/10.1007/978-981-16-1606-8_6

  57. Kulkarni SM, Kishore (2002) Effects of surface treatments and size of fly ash particles on the compressive properties of epoxy based particulate composites. J Mater Sci 37:4321–4326. https://doi.org/10.1023/A:1020648418233

    Article  CAS  Google Scholar 

  58. Doddipatla P, Agrawal S, Pilani B (2018) Effect of treatment of fly ash on mechanical properties of polypropylene. Key Eng Mater. https://doi.org/10.4028/www.scientific.net/KEM.759.20

    Article  Google Scholar 

  59. Yao W, Zhao Y, Wu K et al (2019) Effect of fly ash on the structure and properties of polyolefin elastomer/fly ash/polypropylene composites. Mater Res Express 6:025308. https://doi.org/10.1088/2053-1591/aaed18

    Article  CAS  Google Scholar 

  60. Das A, Satapathy BK (2010) Structural, thermal, mechanical and dynamic mechanical properties of cenosphere filled polypropylene composites. https://doi.org/10.1016/j.matdes.2010.08.041

  61. Chand N, Vashishtha SR (2000) Development, structure and strength properties of PP/PMMA/FA blends

  62. Satapathy S, Kothapalli RVS (2018) Mechanical, dynamic mechanical and thermal properties of banana fiber/recycled high density polyethylene biocomposites filled with flyash cenospheres. J Polym Environ 26:200–213. https://doi.org/10.1007/s10924-017-0938-0

    Article  CAS  Google Scholar 

  63. Gogoi R, Kumar N, Mireja S et al (2019) Effect of hollow glass microspheres on the morphology, rheology and crystallinity of short bamboo fiber-reinforced hybrid polypropylene composite. JOM 71:548–558. https://doi.org/10.1007/s11837-018-3268-3

    Article  CAS  Google Scholar 

  64. Glass Transition Temperature (Tg) of Plastics - Definition & Values. https://omnexus.specialchem.com/polymer-properties/properties/glass-transition-temperature. Accessed 23 Jun 2021

  65. Sengupta S, Maity P, Ray D, Mukhopadhyay A (2013) Stearic acid as coupling agent in fly ash reinforced recycled polypropylene matrix composites: Structural, mechanical, and thermal characterizations. J Appl Polym Sci 130:1996–2004. https://doi.org/10.1002/app.39413

    Article  CAS  Google Scholar 

  66. Godara A, Raabe D, Bergmann I et al (2009) Influence of additives on the global mechanical behavior and the microscopic strain localization in wood reinforced polypropylene composites during tensile deformation investigated using digital image correlation. Compos Sci Technol 69:139–146. https://doi.org/10.1016/j.compscitech.2008.08.031

    Article  CAS  Google Scholar 

  67. Agarwal J, Mohanty S, Nayak SK (2020) Valorization of pineapple peel waste and sisal fiber: Study of cellulose nanocrystals on polypropylene nanocomposites. J Appl Polym Sci 137:49291. https://doi.org/10.1002/app.49291

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors involved in this work endorse IIT Roorkee for equipping excellent experimental, testing and characterization facility. First and second author would like to acknowledge the Ministry of Human Resources and Development (MHRD) for providing monthly research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaurav Manik.

Ethics declarations

Conflict of interest

The content and subject area of this work have no conflict of interest to declare.

Additional information

Handling Editor: Chris Cornelius.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 419 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maurya, A.K., Gogoi, R., Sethi, S.K. et al. A combined theoretical and experimental investigation of the valorization of mechanical and thermal properties of the fly ash-reinforced polypropylene hybrid composites. J Mater Sci 56, 16976–16998 (2021). https://doi.org/10.1007/s10853-021-06383-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06383-2

Navigation