Skip to main content
Log in

Methylammonium Chloride reduces the bandgap width and trap densities for efficient perovskite photodetectors

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Doping dopants are one of the most effective methods which can improve crystallinity, reduce traps, adjust bandgap width of perovskite films and obtain efficient perovskite photodetectors. Chlorine-based dopants have been reported in many literatures, yet their role still remains a mystery. In our study, a typical solution-processed organic–inorganic hybrid perovskite material CH3NH3PbI3 (MAPbI3) was synthesized as the absorption layer for photodetectors and methylammonium chloride (MACl) was selected as dopant. By tuning the incorporation ratios of MACl in the MAPbI3 precursor solutions, bandgap width and trap densities of the MAPbI3 films can be effectively reduced. The crystallinity and morphology of perovskite films were obviously improved, and the photoelectric properties of photodetectors were further enhanced. Ultimately, the optimal device was obtained when the incorporation ratio of MACl reached 1.0 wt%. External quantum efficiency (EQE) of the optimal device exhibited up to 81%, nearly 30% higher than EQE of the device without incorporation. A lower dark current density (Jd) of 8.4 × 10–8 A cm−2 at − 0.1 V bias was obtained because of low trap densities, moreover, due to the suppressed Jd, the optimal device operating at room temperature showed a specific detectivity (D*) of 2.71 × 1012 Jones and a linear dynamic range (LDR) of 104 dB, higher than the D* of 7.03 × 1011 Jones and the LDR of 91 dB of the device without incorporation, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Zhang A, Kim H, Cheng J, Lo YH (2010) Ultrahigh responsivity visible and infrared detection using silicon nanowire phototransistors. Nano Lett 10:2117–2120. https://doi.org/10.1021/nl1006432

    Article  CAS  Google Scholar 

  2. Bie YQ, Liao ZM, Zhang HZ, Li GR, Ye Y, Zhou YB, Xu J, Qin ZX, Dai L, Yu DP (2011) Self-powered, ultrafast, visible-blind UV detection and optical logical operation based on ZnO/GaN nanoscale p–n junctions. Adv Mater 23:649–653. https://doi.org/10.1002/adma.201003156

    Article  CAS  Google Scholar 

  3. Jin YZ, Wang JP, Sun BQ, Blakesley JC, Greenham NC (2008) Solution-processed ultraviolet photodetectors based on colloidal ZnO nanoparticles. Nano Lett 8:1649–1653. https://doi.org/10.1021/nl0803702

    Article  CAS  Google Scholar 

  4. Kind H, Yan HQ, Messer B, Law M, Yang PD (2002) Nanowire ultraviolet photodetectors and optical switches. Adv Mater 14:158–160. https://doi.org/10.1002/chin.200214011

    Article  CAS  Google Scholar 

  5. Soci C, Zhang A, Xiang B, Dayeh SA, Aplin DPR, Park J, Bao XY, Lo YH, Wang D (2007) ZnO Nanowire UV photodetectors with high internal gain. Nano Lett 7:1003–1009. https://doi.org/10.1021/nl070111x

    Article  CAS  Google Scholar 

  6. Hendriks KH, Li WW, Wienk MM, Janssen RAJ (2014) Small-bandgap semiconducting polymers with high near-infrared photoresponse. J Am Chem Soc 136:12130–12136. https://doi.org/10.1021/ja506265h

    Article  CAS  Google Scholar 

  7. Dong QF, Fang YJ, Shao YC, Mulligan P, Qiu J, Cao L, Huang JS (2015) Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals. Science 347:967–970. https://doi.org/10.1126/science.aaa5760

    Article  CAS  Google Scholar 

  8. Lim KG, Kim HB, Jeong J, Kim H, Kim JY, Lee TW (2014) Boosting the power conversion efficiency of perovskite solar cells using self-organized polymeric hole extraction layers with high work function. Adv Mater 26:6461–6466. https://doi.org/10.1002/adma.201401775

    Article  CAS  Google Scholar 

  9. Wang YK, Yang DZ, Zhou XK, Ma D, Vadim A, Ahamad T, Alshehri SM (2017) Perovskite/polymer hybrid thin films for high external quantum efficiency photodetectors with wide spectral response from visible to near-infrared wavelengths. Adv Optical Mater 5:1700213. https://doi.org/10.1002/adom.201700213

    Article  CAS  Google Scholar 

  10. Xing GC, Mathews N, Lim SS, Yantara N, Liu XF, Sabba D, Grätzel M, Mhaisalkar S, Sum TC (2014) Low-temperature solution-processed wavelength-tunable perovskite for lasing. Nat Mater 13:476–480. https://doi.org/10.1038/NMAT3911

    Article  CAS  Google Scholar 

  11. Weber D (1978) CH3NH3PbX3, a Pb(II)-System with cubic perovskite structure. Z Naturforsch 33b:1443–1445. https://doi.org/10.1515/znb-1978-1214

    Article  CAS  Google Scholar 

  12. National Renewable Energy Laboratory. https://www.nrel.gov/pv/cell-efficiency.html. Accessed Dec 2019

  13. Jung EH, Jeon NJ, Park EY, Moon CS, Shin TJ, Yang TY, Noh JH, Seo J (2019) Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene). Nature 567:511–515. https://doi.org/10.1038/s41586-019-1036-3

    Article  CAS  Google Scholar 

  14. Jiang Q, Chu ZM, Wang PY, Yang XL, Liu H, Wang Y, Yin ZG, Wu JL, Zhang XW, You JB (2017) Planar-structure perovskite solar cells with efficiency beyond 21%. Adv Mater 29:1703852. https://doi.org/10.1002/adma.201703852

    Article  CAS  Google Scholar 

  15. Kim HS, Lee CR, Im JH, Lee KB, Moehl T, Marchioro A, Moon SJ, Humphry-Baker R, Yum JH, Moser JE, Grätzel M, Park NG (2012) Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci Rep 2:591. https://doi.org/10.1038/srep00591

    Article  CAS  Google Scholar 

  16. Kojima A, Teshima K, Shirai Y, Miyasaka T (2009) Organometal halide perovskite as visible-light sensitizers for photovoltaic cells. J Am Chem Soc 131:6050–6051. https://doi.org/10.1021/ja809598r

    Article  CAS  Google Scholar 

  17. Lee MM, Teuscher J, Miyasaka T, Murakami TN, Snaith HJ (2012) Efficient hybrid solar cells based on meso-superstructured organometal halide perovskite. Science 338:643–647. https://doi.org/10.1126/science.1228604

    Article  CAS  Google Scholar 

  18. Zhang J, Hou SX, Li RJ, Chen BB, Hou FH, Cui XH, Liu JJ, Wang Q, Wang PY, Zhang DK, Zhao Y, Zhang XD (2020) I/P interface modification for stable and efficient perovskite solar cells. J Semicond 41:052202. https://doi.org/10.1088/1674-4926/41/5/052202

    Article  CAS  Google Scholar 

  19. Cho H, Jeong SH, Park MH, Kim YH, Wolf C, Lee CL, Heo JH, Sadhanala A, Myoung NS, Yoo S, Im SH, Friend RH, Lee TW (2015) Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science 350:1222–1225. https://doi.org/10.1126/science.aad1818

    Article  CAS  Google Scholar 

  20. Wang JP, Wang NN, Jin YZ, Si JJ, Tan JK, Du H, Cheng L, Dai XL, Bai S, He HP, Ye ZZ, Lai ML, Friend RH, Huang W (2015) Interfacial control toward efficient and low-voltage perovskite light-emitting diodes. Adv Mater 27:2311–2316. https://doi.org/10.1002/adma.201405217

    Article  CAS  Google Scholar 

  21. Fu A, Yang PD (2015) Lower threshold for nanowire lasers. Nat Mater 14:557. https://doi.org/10.1038/nmat4291

    Article  CAS  Google Scholar 

  22. Sutherland BR, Sargent EH (2016) Perovskite photonic sources. Nat Photon 10:295–302. https://doi.org/10.1038/NPHOTON.2016.62

    Article  CAS  Google Scholar 

  23. Liang FX, Wang JZ, Zhang ZX, Wang YY, Gao Y, Luo LB (2017) Broadband, ultrafast, self-driven photodetector based on Cs-doped FAPbI3 perovskite thin film. Adv Opt Mater 5:1700654. https://doi.org/10.1002/adom.201700654

    Article  CAS  Google Scholar 

  24. Lin QQ, Armin A, Lyons DM, Burn PL, Meredith P (2015) Low noise, IR-blind organohalide perovskite photodiodes for visible light detection and imaging. Adv Mater 27:2060–2064. https://doi.org/10.1002/adma.201405171

    Article  CAS  Google Scholar 

  25. Rao HS, Li WG, Chen BX, Kuang DB, Su CY (2017) In situ growth of 120 cm2 CH3NH3PbBr3 perovskite crystal film on FTO glass for narrowband-photodetectors. Adv Mater 29:1602631–1602639. https://doi.org/10.1002/adma.201602639

    Article  CAS  Google Scholar 

  26. Tong GQ, Geng XS, Yu YQ, Yu LW, Xu J, Jiang Y, Sheng Y, Shi Y, Chen KJ (2017) Rapid, stable and self-powered perovskite detectors via a fast chemical vapor deposition process. RSC Adv 7:18224–18230. https://doi.org/10.1039/c7ra01430a

    Article  CAS  Google Scholar 

  27. Dou LT, Yang Y, You JB, Hong ZR, Chang WH, Li G, Yang Y (2014) Solution-processed hybrid perovskite photodetectors with high detectivity. Nat Commun 5:5404. https://doi.org/10.1038/ncomms6404

    Article  CAS  Google Scholar 

  28. Yin WJ, Shi TT, Yan YF (2014) Unique properties of halide perovskite as possible origins of the superior solar cell performance. Adv Mater 26:4653–4658. https://doi.org/10.1002/adma.201306281

    Article  CAS  Google Scholar 

  29. Cho AN, Park NG (2017) Impact of interfacial layers in perovskite solar cells. Chemsuschem 10:3687–3704. https://doi.org/10.1002/cssc.201701095

    Article  CAS  Google Scholar 

  30. Han TH, Tan SU, Xue JJ, Meng L, Lee JW, Yang Y (2019) Interface and defect engineering for metal halide perovskite optoelectronic devices. Adv Mater 31:1803515. https://doi.org/10.1002/adma.201803515

    Article  CAS  Google Scholar 

  31. Tian W, Zhou HP, Li L (2017) Hybrid Organic–inorganic perovskite photodetectors. Small 13:1702107. https://doi.org/10.1002/smll.201702107

    Article  CAS  Google Scholar 

  32. Wolff CM, Caprioglio P, Stolterfoht M, Neher D (2019) Nonradiative recombination in perovskite solar cells: the role of interfaces. Adv Mater 31:1902762. https://doi.org/10.1002/adma.201902762

    Article  CAS  Google Scholar 

  33. Derouiche H, Miled HB, Mohamed AB (2010) Enhanced performance of a CuPc: PCBM based solar cell using bathocuproine BCP or nanostructured TiO2 as hole-blocking layer. Phys Status Solidi A 207(2):479–483. https://doi.org/10.1002/pssa.200925424

    Article  CAS  Google Scholar 

  34. Pauling L (1957) The use of atomic radii in the discussion of interatomic distances and lattice constants of crystals. Acta Cryst 10:685–687. https://doi.org/10.1107/S0365110X57002376

    Article  CAS  Google Scholar 

  35. Du MH (2014) Efficient carrier transport in halide perovskites: theoretical perspectives. J Mater Chem A 2:9091–9098. https://doi.org/10.1039/c4ta01198h

    Article  CAS  Google Scholar 

  36. Guo F, Qiu SD, Hu JL, Wang HH, Cai BY, Li JJ, Yuan XC, Liu XH, Forberich K, Brabec CJ, Mai YH (2019) A generalized crystallization protocol for scalable deposition of high-quality perovskite thin films for photovoltaic applications. Adv Sci 6:1901067. https://doi.org/10.1002/advs.201901067

    Article  CAS  Google Scholar 

  37. Kim M, Kim GH, Lee TK, Choi IW, Jo Y, Yoon YJ, Kim JW, Lee J, Huh D, Lee H, Kwak SK, Kim JY, Kim DS (2019) Methylammonium chloride Induces intermediate phase stabilization for efficient perovskite solar cells. Joule 3:1–14. https://doi.org/10.1016/j.joule.2019.06.014

    Article  CAS  Google Scholar 

  38. Zheng F, Zuo CT, Niu MS, Zhou CH, Bradley S, Hall C, Xu WL, Wen XM, Hao XT, Gao M, Smith TA, Ghiggino KP (2020) Revealing the role of methylammonium chloride for improving the performance of 2D perovskite solar cells. ACS Appl Mater Interfaces 23:25980–25990. https://doi.org/10.1021/acsami.0c05714

    Article  CAS  Google Scholar 

  39. Pant N, Kulkarni A, Yanagida M, Shirai Y, Miyasaka T, Miyano K (2020) Investigating the growth of CH3NH3PbI3 thin films on RF-sputtered NiOx for inverted planar perovskite solar. Adv Mater Interfaces 7:1901748. https://doi.org/10.1002/admi.201901748

    Article  CAS  Google Scholar 

  40. Liu MY, Chen ZM, Xue QF, Cheung SH, So SK, Yip HL, Cao Y (2018) High performance low-bandgap perovskite solar cells based on a high-quality mixed Sn–Pb perovskite film prepared by vacuum-assisted thermal annealing. J Mater Chem A 6:16347–16354. https://doi.org/10.1039/c8ta05444d

    Article  CAS  Google Scholar 

  41. Gong X, Tong MH, Xia YJ, Cai WZ, Moon JS, Cao Y, Yu G, Shieh CL, Nilsson B, Heeger AJ (2009) High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm. Science 325:1665–1667. https://doi.org/10.1126/science.1176706

    Article  CAS  Google Scholar 

  42. Wang WB, Zhao DW, Zhang FJ, Li LD, Du MD, Wang CL, Yu Y, Huang QQ, Zhang M, Li LL, Miao JL, Lou Z, Shen GZ, Fang Y, Yan YF (2017) Highly sensitive low-bandgap perovskite photodetectors with response from ultraviolet to the near-infrared region. Adv Funct Mater 27:1703953. https://doi.org/10.1002/adfm.201703953

    Article  CAS  Google Scholar 

  43. Deng H, Yang XK, Dong DD, Li B, Yang D, Yuan SJ, Qiao KK, Cheng YB, Tang J, Song HS (2015) Flexible and semitransparent organolead triiodide perovskite network photodetector arrays with high stability. Nano Lett 15:7963. https://doi.org/10.1021/acs.nanolett.5b03061

    Article  CAS  Google Scholar 

  44. Li XM, Yu DJ, Cao F, Gu Y, Wei Y, Song JZ, Zeng HB (2016) Healing all-inorganic perovskite films via recyclable dissolution–recyrstallization for compact and smooth carrier channels of optoelectronic devices with high stability. Adv Funct Mater 26:5903. https://doi.org/10.1002/adfm.201601571

    Article  CAS  Google Scholar 

  45. Sutherland BR, Johnston AK, Ip AH, Xu JX, Adinolf V, Kanjanaboos P, Sargent EH, (2015) Sensitive, fast, and stable perovskite photodetectors exploiting interface engineering. ACS Photonics 2:1117–1123. https://doi.org/10.1021/acsphotonics.5b00164

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the fund for talent of Guangxi province, (Nos. T3120099202, T3120097921), Guangxi science and technology base and talent major project (No. AD19110157), Guangxi Science and Technology Program (AD19245132), and Guangxi University Foundation (A3120051010), China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yukun Wang or W. H. Sun.

Ethics declarations

Conflicts of interest

There are no conflicts to declare.

Additional information

Handling Editor: Pedro Camargo.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 2168 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Wang, Y., Li, L. et al. Methylammonium Chloride reduces the bandgap width and trap densities for efficient perovskite photodetectors. J Mater Sci 56, 9242–9253 (2021). https://doi.org/10.1007/s10853-021-05840-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-05840-2

Navigation