Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Nacre-like nanocomposite film with excellent dielectric insulation properties and mechanical strength based on montmorillonite nanosheet and aramid nanofiber


Unlike the mechanisms behind their enhanced mechanical properties, application of artificial nacre-like materials has attracted very little attention from scholars. In this study, we designed a unique artificial nacre-like material that integrated outstanding mechanical properties and dielectric insulation properties by assembling MTM nanosheet and aramid nanofiber (ANF) through vacuum-assisted filtration. Compared with other nanocomposite films, the layered ANF/MTM nanocomposite film displayed superior mechanical properties (the tensile strength of ~ 126.5 MPa and elongation at break of ~ 2.56%) and dielectric insulation performance (77.2 kV/mm). In addition, it exhibited good transparency and flexibility. Therefore, this nanocomposite film has great potential for application in flexible electronics and high-voltage electrical insulation.

This is a preview of subscription content, log in to check access.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6


  1. 1

    Huang Z, Li H, Pan Z, Wei Q, Chao Y, Li X (2011) Uncovering high-strain rate protection mechanism in nacre. Sci Rep 1:1–5

  2. 2

    Huang Z, Li X (2012) Order-disorder transition of aragonite nanoparticles in nacre. Phys Rev Lett 109:025501

  3. 3

    Jian W, Cheng Q, Lin L, Jiang L (2014) Synergistic toughening bioinspired poly(vinyl alcohol)-clay-nanofibrillar cellulose artificial nacre. ACS Nano 8:2739–2745

  4. 4

    Laaksonen P, Walther A, Malho J, Kainlauri M, Ikkala O, Linder M (2011) Genetic engineering of biomimetic nanocomposites: diblock proteins, graphene, and nanofibrillated cellulose. Angew Chem Int Edit 50:8688–8691

  5. 5

    Suzuki M, Saruwatari K, Kogure T, Yamamoto Y, Nishimura T, Kato T, Nagasawa H (2009) An acidic matrix protein, pif, is a key macromolecule for nacre formation. Science 325:1388–1390

  6. 6

    Cheng Q, Jiang L (2016) Science behind nacre: matrix-directed mineralization at ambient condition. Sci China Mater 59:7–9

  7. 7

    Gao H, Ji B, Jager L, Arzt E, Fratzl P (2003) Materials become insensitive to flaws at nanoscale: lessons from nature. Proc Natl Acad Sci USA 100:5597–5600

  8. 8

    Ritchie R (2011) The conflicts between strength and toughness. Nat Mater 10:817–822

  9. 9

    Launey M, Ritchie R (2009) On the fracture toughness of advanced materials. Adv Mater 21:2103–2110

  10. 10

    André Meyers M, McKittrick J, Chen P (2013) Structural biological materials: critical mechanics-materials connections. Science 339:773–779

  11. 11

    Tang Z, Kotov N, Magonov S, Ozturk B (2003) Nanostructured artificial nacre. Nat Mater 2:413–418

  12. 12

    Podsiadlo P, Kaushik AK, Arruda E, Waas A, Sup Shim B, Xu J, Nandivada H, Pumplin G, Lahann J, Ramamoorthy A, Kotov N (2007) Ultrastrong and stiff layered polymer nanocomposites. Science 318:80–83

  13. 13

    Yao H-B, Fang H-Y, Tan Z-H, Wu L-H, Yu S-H (2010) Biologically inspired, strong, transparent, and functional layered organic–inorganic hybrid films. Angew Chem Int Ed 49:2140–2145

  14. 14

    Ke C, Shi B, Yue Y, Qi J, Guo L (2015) Binary synergy strengthening and toughening of bio-inspired nacre-like graphene oxide/sodium alginate composite paper. ACS Nano 9:8165–8175

  15. 15

    Munch E, Launey M, Alsem DH, Saiz E, Tomsia A, Ritchie R (2008) Tough, bio-inspired hybrid materials. Science 322:1516–1520

  16. 16

    Jian W, Cheng Q, Lin L, Chen L, Jiang L (2013) Understanding the relationship of performance with nanofiller content in the biomimetic layered nanocomposites. Nanoscale 5:6356–6362

  17. 17

    Yao H-B, Tan Z-H, Fang H-Y, Yu S-H (2010) Artificial nacre-like bionanocomposite films from the self-assembly of chitosan-montmorillonite hybrid building blocks. Angew Chem Int Ed 49:10127–10131

  18. 18

    Li S-K, L-b Mao H-L, Gao H-B Yao, Yu S-H (2017) Bio-inspired clay nanosheets/polymer matrix/mineral nanofibers ternary composite films with optimal balance of strength and toughness. Sci China Mater 60:1–9

  19. 19

    Yan Y-X, Yao H-B, Yu S-H (2016) Nacre-like ternary hybrid films with enhanced mechanical properties by interlocked nanofiber design. Adv Mater Interfaces 3:1600296

  20. 20

    Liu Y, Yu S-H, Bergström L (2017) Transparent and flexible nacre-like hybrid films of aminoclays and carboxylated cellulose nanofibrils. Adv Funct Mater 28:1703277

  21. 21

    Cao K, Pons Siepermann C, Yang M, Waas A, Kotov N, Thouless M, Arruda E (2013) Reactive aramid nanostructures as high-performance polymeric building blocks for advanced composites. Adv Funct Mater 23:2072–2080

  22. 22

    Yang M, Cao K, Sui L, Qi Y, Zhu J, Waas A-M, Arruda E, Kieffer J, Thouless M-D, Kotov N (2011) Dispersions of aramid nanofibers: a new nanoscale building block. ACS Nano 5:6945–6954

  23. 23

    Lin J, Hwi Bang S, Malakooti M, Sodano H (2017) Isolation of aramid nanofibers for high strength and toughness polymer nanocomposites. ACS Appl Mater Interfaces 9:11167–11175

  24. 24

    Ra Kwon S, Harris J, Zhou T, Loufakis D, Boyd J-G, Lutkenhaus J (2017) Mechanically strong graphene/aramid nanofiber composite electrodes for structural energy and power. ACS Nano 11:6682–6690

  25. 25

    Kuang Q, Zhang D, Chul Yu J, Chang Y-W, Yue M, Hou Y, Yang M (2015) Toward record-high stiffness in polyurethane nanocomposites using aramid nanofibers. J Phys Chem C 119:27467–27477

  26. 26

    Wang F, Wu Y, Huang Y, Liu L (2018) Strong, transparent and flexible aramid nanofiber/POSS hybrid organic/inorganic nanocomposite membranes. Compos Sci Technol 156:269–275

  27. 27

    Guan Y, Li W, Zhang Y, Shi Z, Tan J, Wang F, Wang Y (2017) Aramid nanofibers and poly (vinyl alcohol) nanocomposites for ideal combination of strength and toughness via hydrogen bonding interactions. Compos Sci Technol 144:193–201

  28. 28

    Zhu J, Cao W, Yue M, Hou Y, Han J, Yang M (2015) Strong and stiff aramid nanofiber/carbon nanotube nanocomposites. ACS Nano 9:2489–2501

  29. 29

    Lu Z, Si L, Dang W, Zhao Y (2018) Transparent and mechanically robust poly (para-phenylene terephthamide) PPTA nanopaper toward electrical insulation based on nanoscale fibrillated aramid-fibers. Compos Part A Appl Sci 115:321–330

  30. 30

    Yang B, Zhang M, Lu Z, Luo J, Song S, Tan J, Zhang Q (2018) Toward improved performances of para-aramid (PPTA) paper-based nanomaterials via aramid nanofibers (ANFs) and ANFs-film. Compos Part B Eng 154:166–174

  31. 31

    Huang J, Zhou Y, Zhou Z, Liu R (2016) Dramatically enhanced electrical breakdown strength in cellulose nanopaper. AIP Adv 6:095026

  32. 32

    Yang B, Zhang M, Lu Z, Luo J, Song S, Zhang Q (2018) From PPTA broken paper: high-performance anfs and their application in electrical insulating nanomaterials with enhanced properties. ACS Sustain Chem Eng 6:8954–8963

  33. 33

    Wang H, Xie H, Wang S, Gao Z, Li C, Hu G-H, Xiong C (2018) Enhanced dielectric property and energy storage density of PVDF-HFP based dielectric composites by incorporation of silver nanoparticles-decorated exfoliated montmorillonite nanoplatelets. Compos Part A Appl Sci 108:62–68

  34. 34

    Trudeau G, Jumas JM, Dupuis P (1980) Intermolecular interactions and anesthesia: infrared spectroscopic studies. In: Boschke FL (ed) Van der Waals systems. Springer, Berlin, pp 91–125

  35. 35

    Boldeskul I, Tsymbal I, Ryltsev E (1997) Reversal of the usual v(CHD) spectral shift of haloforms in some hydrogen-bonded complexes. J Mol Struct 436:167–171

  36. 36

    Hobza P, Havlas Z (2002) Improper, blue-shifting hydrogen bond. Theor Chem Acc 108:325–334

  37. 37

    Scheiner S, Kar T (2002) Red-versus blue-shifting hydrogen bonds: are there fundamental distinctions. J Phys Chem A 106:1784–1789

  38. 38

    Alabugin I, Manoharan M, Peabody S (2003) Electronic basis of improper hydrogen bonding: a subtle balance of hyperconjugation and rehybridization. J Am Chem Soc 125:5973–5987

  39. 39

    Yao K, Huang S, Tang H, Yao K, Huang S, Tang H, Xu Y, Gerd B, Lars A, Zhou Q (2017) Bioinspired interface engineering for moisture resistance in nacre-mimetic cellulose nanofibrils/clay nanocomposites. ACS Appl Mater Interfaces 9:20169–20178

  40. 40

    Wang F, Wu Y, Huang Y (2018) High strength, thermostable and fast-drying hybrid transparent membranes with poss nanoparticles aligned on aramid nanofibers. Compos Part A Appl Sci 110:154–161

  41. 41

    Wang F, Wu Y, Huang Y (2018) Novel application of graphene oxide to improve hydrophilicity and mechanical strength of aramid nanofiber hybrid membrane. Compos Part A Appl Sci 110:126–132

  42. 42

    Ren F, Tan W, Duan Q, Jin Y, Pei L, Ren P, Yan D (2019) Ultra-low gas permeable cellulose nanofiber nanocomposite films filled with highly oriented graphene oxide nanosheets induced by shear field. Carbohyd Polym 209:310–319

  43. 43

    Patterson B, Malakooti M, Lin J, Okorom A, Sodano H (2018) Aramid nanofibers for multiscale fiber reinforcement of polymer composites. Compos Sci Technol 161:92–99

  44. 44

    Samant S, Grabowski C-A, Kisslinger K, Yager K-G, Yuan G, Satija S-K, Raghavan D, Durstock M-F, Karim A (2016) Directed self-assembly of block copolymers for high breakdown strength polymer film capacitors. ACS Appl Mater Interfaces 8:7966–7976

  45. 45

    Dai Y, Meng C, Wu H, Luo L, Liu X (2019) Preparation of novel aramid film with ultra-high breakdown strength via constructing three-dimensional covalent crosslinked structure. Chem Eng J 375:122042

  46. 46

    Xie F, Qin P, Zhuo L, Lu Z, Wang Y (2018) Novel aramid paper-based materials with enhanced thermal conductivity via ZnO nanowire decoration on aramid fiber. J Mater Sci Mater El 29:12161–12168

  47. 47

    Tian W, Qiu T, Shi Y, He L, Tuo X (2017) The facile preparation of aramid insulation paper from the bottom-up nanofiber synthesis. Mater Lett 202:158–161

  48. 48

    Lao J, Xie H, Shi Z, Li G, Li B, Hu G-H, Yang Q, Xiong C (2018) Flexible regenerated cellulose/boron nitride nanosheet high-temperature dielectric nanocomposite films with high energy density and breakdown strength. ACS Sustain Chem Eng 6:7151–7158

  49. 49

    Yang J, Xie H, Chen H, Shi Z, Wu T, Yang Q, Xiong C (2018) Cellulose nanofibril/boron nitride nanosheet composites with enhanced energy density and thermal stability by interfibrillar cross-linking through Ca2+. J Mater Chem A 6:1403–1411

  50. 50

    Fillery S-P, Koerner H, Drummy L, Dunkerley E, Durstock M-F, Schmidt D, Vaia R-A (2012) Nanolaminates: increasing dielectric breakdown strength of composites. ACS Appl Mater Interfaces 4:1388–1396

Download references


The authors would like to acknowledge the financial support from the National Key Research and Development Plan (2017YFB0308300), Key Scientific Research Group of Shaanxi Province (2017-KCT-02), Key Laboratory Research Project of Shaanxi Education Department (Project No. 18JS011), Shaanxi Provincial Natural Science Basic Research Plan (Project No. 2019JQ-108).

Author information

Correspondence to Zhaoqing Lu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Si, L., Lu, Z., Yao, C. et al. Nacre-like nanocomposite film with excellent dielectric insulation properties and mechanical strength based on montmorillonite nanosheet and aramid nanofiber. J Mater Sci 55, 5948–5960 (2020).

Download citation