Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Electrospun polyimide nonwovens with enhanced mechanical and thermal properties by addition of trace plasticizer

  • 14 Accesses


Electrospun polyimide (PI) nanofiber nonwovens with excellent mechanical and thermal performance are highly required in many applications. The addition of phosphorus-containing compounds could be used as plasticizer to achieve this purpose. Herein, different amounts of trace diphenyl phosphate (DPhP) as plasticizer are added into the PI’s precursor for electrospinning. After imidization, phosphorous-containing electrospun PI nonwovens (PI-PX) are produced. The results indicate that the addition of DPhP significantly enhanced the thermal and mechanical properties of PI-PX. PI-P0.6 (0.6 wt% DPhP) shows a T5% of 510 °C in air and 561 °C in Ar, 29 °C and 40 °C higher than those of pure PI. PI-P0.6 also shows the highest tensile strength/modulus/toughness of 44 MPa/2.0 GPa/8.5 MPa, 208 MPa/9.7 GPa/40.7 MPa, and 123 MPa/3.3 GPa/25.1 MPa, respectively, when applying different thickness determinations. In addition, PI-P0.6 also exhibited much higher puncture strength than other Li-ion battery separators. Such PI-PX composite nonwovens would be good candidates for various applications, especially for Li-ion battery separators.

This is a preview of subscription content, log in to check access.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7


  1. 1

    Xue J, Wu T, Dai Y, Xia Y (2019) Electrospinning and electrospun nanofibers: methods, materials, and applications. Chem Rev 119(8):5298–5415.

  2. 2

    Park JH, Rutledge GC (2017) 50th anniversary perspective: advanced polymer fibers: high performance and ultrafine. Macromolecules 50(15):5627–5642.

  3. 3

    Greiner A, Wendorff JH (2007) Electrospinning: a fascinating method for the preparation of ultrathin fibers. Angew Chem Int Ed 46(30):5670–5703

  4. 4

    Agarwal S, Wendorff JH, Greiner A (2008) Use of electrospinning technique for biomedical applications. Polymer 49(26):5603–5621

  5. 5

    Fridrikh SV, Yu JH, Brenner MP, Rutledge GC (2003) Controlling the fiber diameter during electrospinning. Phys Rev Lett 90(14):144502.

  6. 6

    Jian S, Zhu J, Jiang S, Chen S, Fang H, Song Y, Duan G, Zhang Y, Hou H (2018) Nanofibers with diameter below one nanometer from electrospinning. RSC Adv 8(9):4794–4802.

  7. 7

    Rutledge GC, Fridrikh SV (2007) Formation of fibers by electrospinning. Adv Drug Del Rev 59(14):1384–1391.

  8. 8

    Agarwal S, Greiner A, Wendorff JH (2013) Functional materials by electrospinning of polymers. Prog Polym Sci 38(6):963–991

  9. 9

    Jiang S, Agarwal S, Greiner A (2017) Low-density open cellular sponges as functional materials. Angew Chem Int Ed 56(49):15520–15538

  10. 10

    Jiang S, Uch B, Agarwal S, Greiner A (2017) Ultralight, thermally insulating, compressible polyimide fiber assembled sponges. ACS Appl Mater Interfaces 9(37):32308–32315

  11. 11

    Miao Y-E, Zhu G-N, Hou H, Xia Y-Y, Liu T (2013) Electrospun polyimide nanofiber-based nonwoven separators for lithium-ion batteries. J Power Sources 226:82–86.

  12. 12

    Zhang T-W, Tian T, Shen B, Song Y-H, Yao H-B (2019) Recent advances on biopolymer fiber based membranes for lithium-ion battery separators. Compos Commun 14:7–14.

  13. 13

    Xu Y, Yuan T, Bian Z, Sun H, Pang Y, Peng C, Yang J, Zheng S (2019) Electrospun flexible si/c@cnf nonwoven anode for high capacity and durable lithium-ion battery. Compos Commun 11:1–5.

  14. 14

    Sun G, Dong G, Kong L, Yan X, Tian G, Qi S, Wu D (2018) Robust polyimide nanofibrous membrane with porous-layer-coated morphology by in situ self-bonding and micro-crosslinking for lithium-ion battery separator. Nanoscale 10(47):22439–22447.

  15. 15

    Kong L, Yan Y, Qiu Z, Zhou Z, Hu J (2018) Robust fluorinated polyimide nanofibers membrane for high-performance lithium-ion batteries. J Membr Sci 549:321–331.

  16. 16

    Chen W, Liu Y, Ma Y, Yang W (2015) Improved performance of lithium ion battery separator enabled by co-electrospinnig polyimide/poly(vinylidene fluoride-co-hexafluoropropylene) and the incorporation of TiO2-(2-hydroxyethyl methacrylate). J Power Sources 273:1127–1135.

  17. 17

    Sun G, Kong L, Liu B, Niu H, Zhang M, Tian G, Qi S, Wu D (2019) Ultrahigh-strength, nonflammable and high-wettability separators based on novel polyimide-core@polybenzimidazole-sheath nanofibers for advanced and safe lithium-ion batteries. J Membr Sci 582:132–139.

  18. 18

    Lv D, Wang R, Tang G, Mou Z, Lei J, Han J, De Smedt S, Xiong R, Huang C (2019) Ecofriendly electrospun membranes loaded with visible-light-responding nanoparticles for multifunctional usages: highly efficient air filtration, dye scavenging, and bactericidal activity. ACS Appl Mater Interfaces 11(13):12880–12889.

  19. 19

    Zhu M, Han J, Wang F, Shao W, Xiong R, Zhang Q, Pan H, Yang Y, Samal SK, Zhang F, Huang C (2017) Electrospun nanofibers membranes for effective air filtration. Macromol Mater Eng 302(1):1600353.

  20. 20

    Lv D, Zhu M, Jiang Z, Jiang S, Zhang Q, Xiong R, Huang C (2018) Green electrospun nanofibers and their application in air filtration. Macromol Mater Eng 303(12):1800336.

  21. 21

    Agarwal S, Jiang S, Chen Y (2019) Progress in the field of water-and/or temperature-triggered polymer actuators. Macromol Mater Eng 304(2):1800548

  22. 22

    Liu L, Bakhshi H, Jiang S, Schmalz H, Agarwal S (2018) Composite polymeric membranes with directionally embedded fibers for controlled dual actuation. Macromol Rapid Commun 39(10):1800082.

  23. 23

    Jiang S, Helfricht N, Papastavrou G, Greiner A, Agarwal S (2018) Low-density self-assembled poly (n-isopropyl acrylamide) sponges with ultrahigh and extremely fast water uptake and release. Macromol Rapid Commun 39(8):1700838

  24. 24

    Molnar K, Jedlovszky-Hajdu A, Zrinyi M, Jiang S, Agarwal S (2017) Poly(amino acid)-based gel fibers with ph responsivity by coaxial reactive electrospinning. Macromol Rapid Commun 38(14):1700147

  25. 25

    Lei Y, Wang Q, Peng S, Ramakrishna S, Zhang D, Zhou K (2020) Electrospun inorganic nanofibers for oxygen electrocatalysis: design, fabrication and progress. Adv Energy Mater.

  26. 26

    Wang X, Ding B, Li B (2013) Biomimetic electrospun nanofibrous structures for tissue engineering. Mater Today 16(6):229–241.

  27. 27

    Liu X, Wei D, Zhong J, Ma M, Zhou J, Peng X, Ye Y, Sun G, He D (2015) Electrospun nanofibrous P(DLLA-CL) balloons as calcium phosphate cement filled containers for bone repair: in vitro and in vivo studies. ACS Appl Mater Interfaces 7(33):18540–18552.

  28. 28

    Sun G, Wei D, Liu X, Chen Y, Li M, He D, Zhong J (2013) Novel biodegradable electrospun nanofibrous P(DLLA-CL) balloons for the treatment of vertebral compression fractures. Nanomed Nanotechnol Biol Med 9(6):829–838.

  29. 29

    Hua D, Liu Z, Wang F, Gao B, Chen F, Zhang Q, Xiong R, Han J, Samal SK, De Smedt SC, Huang C (2016) Ph responsive polyurethane (core) and cellulose acetate phthalate (shell) electrospun fibers for intravaginal drug delivery. Carbohydr Polym 151:1240–1244.

  30. 30

    Duan G, Bagheri AR, Jiang S, Golenser J, Agarwal S, Greiner A (2017) Exploration of macroporous polymeric sponges as drug carriers. Biomacromol 18(10):3215–3221.

  31. 31

    Liu Y, Jia J, Li YV, Hao J, Pan K (2018) Novel ZnO/NiO Janus-like nanofibers for effective photocatalytic degradation. Nanotechnology 29(43):435704.

  32. 32

    Ni Y, Yan K, Xu F, Zhong W, Zhao Q, Liu K, Yan K, Wang D (2019) Synergistic effect on TiO2 doped poly (vinyl alcohol-co-ethylene) nanofibrous film for filtration and photocatalytic degradation of methylene blue. Compos Commun 12:112–116.

  33. 33

    Jiang S, Chen Y, Duan G, Mei C, Greiner A, Agarwal S (2018) Electrospun nanofiber reinforced composites: a review. Polym Chem 9:2685–2720.

  34. 34

    Yang X, Guo Y, Han Y, Li Y, Ma T, Chen M, Kong J, Zhu J, Gu J (2019) Significant improvement of thermal conductivities for BNNS/PVA composite films via electrospinning followed by hot-pressing technology. Compos B 175:107070.

  35. 35

    Zhang N, Qiao R, Su J, Yan J, Xie Z, Qiao Y, Wang X, Zhong J (2017) Recent advances of electrospun nanofibrous membranes in the development of chemosensors for heavy metal detection. Small 13(16):1604293.

  36. 36

    Zhao R, Lu X, Wang C (2018) Electrospinning based all-nano composite materials: recent achievements and perspectives. Compos Commun 10:140–150.

  37. 37

    Gao S, Tang G, Hua D, Xiong R, Han J, Jiang S, Zhang Q, Huang C (2019) Stimuli-responsive bio-based polymeric systems and their applications. J Mater Chem B 7(5):709–729.

  38. 38

    Liu H, Mukherjee S, Liu Y, Ramakrishna S (2018) Recent studies on electrospinning preparation of patterned, core–shell, and aligned scaffolds. J Appl Polym Sci 135(31):46570.

  39. 39

    Qin Z, Yin Y, Zhang W, Li C, Pan K (2019) Wearable and stretchable triboelectric nanogenerator based on crumpled nanofibrous membranes. ACS Appl Mater Interfaces 11(13):12452–12459.

  40. 40

    Cheon S, Kang H, Kim H, Son Y, Lee JY, Shin H-J, Kim S-W, Cho JH (2018) High-performance triboelectric nanogenerators based on electrospun polyvinylidene fluoride–silver nanowire composite nanofibers. Adv Funct Mater 28(2):1703778.

  41. 41

    Hou H, Xu W, Ding Y (2018) The recent progress on high-performance polymer nanofibers by electrospinning. J Jiangxi Normal Univ (Nat Sci) 42(6):551–564.

  42. 42

    Ding Y, Hou H, Zhao Y, Zhu Z, Fong H (2016) Electrospun polyimide nanofibers and their applications. Prog Polym Sci 61:67–103.

  43. 43

    Yang H, Jiang S, Fang H, Hu X, Duan G, Hou H (2018) Molecular orientation in aligned electrospun polyimide nanofibers by polarized FT-IR spectroscopy. Spectrochim Acta A Mol Biomol Spectrosc 200:339–344.

  44. 44

    Xu H, Jiang S, Ding C, Zhu Y, Li J, Hou H (2017) High strength and high breaking load of single electrospun polyimide microfiber from water soluble precursor. Mater Lett 201:82–84

  45. 45

    Jiang S, Han D, Huang C, Duan G, Hou H (2018) Temperature-induced molecular orientation and mechanical properties of single electrospun polyimide nanofiber. Mater Lett 216:81–83

  46. 46

    Liu J, Liu Y, Yang W, Ren Q, Li F, Huang Z (2018) Lithium ion battery separator with high performance and high safety enabled by tri-layered SiO2@PI/m-PE/SiO2@PI nanofiber composite membrane. J Power Sources 396:265–275.

  47. 47

    Cai M, Zhu J, Yang C, Gao R, Shi C, Zhao J (2019) A parallel bicomponent TPU/PI membrane with mechanical strength enhanced isotropic interfaces used as polymer electrolyte for lithium-ion battery. Polymers 11(1):185

  48. 48

    Hao Z, Wu J, Wang C, Liu J (2019) Electrospun polyimide/metal-organic framework nanofibrous membrane with superior thermal stability for efficient PM2.5 capture. ACS Appl Mater Interfaces 11(12):11904–11909.

  49. 49

    Jiang S, Hou H, Agarwal S, Greiner A (2016) Polyimide nanofibers by “green” electrospinning via aqueous solution for filtration applications. ACS Sustain Chem Eng 4(9):4797–4804.

  50. 50

    Jiang W, Liu Z, Kong Q, Yao J, Zhang C, Han P, Cui G (2013) A high temperature operating nanofibrous polyimide separator in Li-ion battery. Solid State Ionics 232:44–48.

  51. 51

    Cao L, An P, Xu Z, Huang J (2016) Performance evaluation of electrospun polyimide non-woven separators for high power lithium-ion batteries. J Electroanal Chem 767:34–39.

  52. 52

    Chung GS, Jo SM, Kim BC (2005) Properties of carbon nanofibers prepared from electrospun polyimide. J Appl Polym Sci 97(1):165–170.

  53. 53

    Liu J, Huang J, Wujcik EK, Qiu B, Rutman D, Zhang X, Salazard E, Wei S, Guo Z (2015) Hydrophobic electrospun polyimide nanofibers for self-cleaning materials. Macromol Mater Eng 300(3):358–368.

  54. 54

    Yao K, Chen J, Li P, Duan G, Hou H (2019) Robust strong electrospun polyimide composite nanofibers from a ternary polyamic acid blend. Compos Commun 15:92–95.

  55. 55

    Duan G, Liu S, Jiang S, Hou H (2019) High-performance polyamide-imide films and electrospun aligned nanofibers from an amide-containing diamine. J Mater Sci 54(8):6719–6727.

  56. 56

    Jian S, Ding C, Yang T, Zhang C, Hou H (2018) Effect of trace diphenyl phosphate on mechanical and thermal performance of polyimide composite films. Compos Commun 7:42–46.

  57. 57

    Yao J, Pantano MF, Pugno NM, Bastiaansen CWM, Peijs T (2015) High-performance electrospun co-polyimide nanofibers. Polymer 76:105–112.

  58. 58

    Jiang Y, Yan P, Wang Y, Zhou C, Lei J (2018) Form-stable phase change materials with enhanced thermal stability and fire resistance via the incorporation of phosphorus and silicon. Mater Des 160:763–771.

  59. 59

    Xu W-Z, Xu B-L, Wang G-S, Wang X-L, Liu L (2017) Synergistic effect of expandable graphite and α-type zirconium phosphate on flame retardancy of polyurethane elastomer. J Appl Polym Sci 134(32):45188.

  60. 60

    Sun Z, Hou Y, Hu Y, Hu W (2018) Effect of additive phosphorus-nitrogen containing flame retardant on char formation and flame retardancy of epoxy resin. Mater Chem Phys 214:154–164.

  61. 61

    Zhang Y-C, Xu G-L, Liang Y, Yang J, Hu J (2016) Preparation of flame retarded epoxy resins containing dopo group. Thermochim Acta 643:33–40.

  62. 62

    Liu K, Li Y, Tao L, Xiao R (2018) Preparation and characterization of polyamide 6 fibre based on a phosphorus-containing flame retardant. RSC Adv 8(17):9261–9271.

  63. 63

    Liu C, Yao Q (2018) Mechanism of thermal degradation of aryl bisphosphates and the formation of polyphosphates. J Anal Appl Pyrolysis 133:216–224.

  64. 64

    Jang BN, Wilkie CA (2005) The effects of triphenylphosphate and recorcinolbis(diphenylphosphate) on the thermal degradation of polycarbonate in air. Thermochim Acta 433(1):1–12.

  65. 65

    Feng J, Hao J, Du J, Yang R (2010) Flame retardancy and thermal properties of solid bisphenol a bis(diphenyl phosphate) combined with montmorillonite in polycarbonate. Polym Degrad Stab 95(10):2041–2048.

  66. 66

    Alexandrino EM, da Conceição TF, Felisberti MI (2014) Improvement of processing and mechanical properties of polyetherimide by antiplasticization with resorcinol bis(diphenyl phosphate). J Appl Polym Sci 131(16):40619.

  67. 67

    Mu X, Wang D, Pan Y, Cai W, Song L, Hu Y (2019) A facile approach to prepare phosphorus and nitrogen containing macromolecular covalent organic nanosheets for enhancing flame retardancy and mechanical property of epoxy resin. Compos B 164:390–399.

  68. 68

    Guo Y, He S, Zuo X, Xue Y, Chen Z, Chang C-C, Weil E, Rafailovich M (2017) Incorporation of cellulose with adsorbed phosphates into poly (lactic acid) for enhanced mechanical and flame retardant properties. Polym Degrad Stab 144:24–32.

  69. 69

    Arora P, Zhang Z (2004) Battery separators. Chem Rev 104(10):4419–4462.

  70. 70

    Nesterova T, Dam-Johansen K, Kiil S (2010) Synthesis of durable microcapsules for self-healing anticorrosive coatings: a comparison of selected methods. Prog Org Coat 70(4):342–352.

  71. 71

    Xu G, Ding L, Wu T, Xiang M, Yang F (2018) Effect of high molecular weight on pore formation and various properties of microporous membrane used for lithium-ion battery separator. J Polym Res 25(8):166.

Download references


This work was financially supported by National Natural Science Foundation of China (21574060, 21774053, and 51903123); Major Special Projects of Jiangxi Provincial Department of Science and Technology (20114ABF05100); Technology Plan Landing Project of Jiangxi Provincial Department of Education (GCJ2011-24).

Author information

Correspondence to Gaigai Duan or Haoqing Hou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, D., Yu, J., Duan, G. et al. Electrospun polyimide nonwovens with enhanced mechanical and thermal properties by addition of trace plasticizer. J Mater Sci 55, 5667–5679 (2020).

Download citation