Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Axial misfit stress relaxation in core–shell nanowires with polyhedral cores through the nucleation of misfit prismatic dislocation loops

Abstract

The theoretical model of axial misfit stress relaxation in polyhedral core–shell nanowires through the nucleation of prismatic dislocation loops is suggested. Different sites of dislocation nucleation in the nanowires with hexagonal, square and triangular shapes of the core cross section are considered. The energy change caused by the dislocation nucleation is calculated for every case under the assumption that the shell thickness is much smaller than the core size. The corresponding critical values of the misfit parameter for the dislocation nucleation are determined and compared with each other. According to this comparison, the most favorable sites in the core–shell nanowires and the optimal shapes of the dislocation loops are defined. Nanowires with round, hexagonal, square and triangle shapes of the core cross section are ranged with respect to their stability to dislocation loop nucleation.

This is a preview of subscription content, log in to check access.

Figure 1
Figure 2
Figure 3
Figure 4

References

  1. 1

    Lauhon LJ, Gudiksen MS, Lieber CM (2004) Semiconductor nanowire heterostructures. Philos Trans R Soc Lond Ser A Math Phys Eng Sci 362(1819):1247–1260

  2. 2

    Chopra N (2010) Multifunctional and multicomponent heterostructured one-dimensional nanostructures: advances in growth, characterisation, and applications. Mater Technol 25(3–4):212–230

  3. 3

    Fang X, Zhai T, Gautam UK, Li L, Wu L, Bando Y, Golberg D (2011) ZnS nanostructures: from synthesis to applications. Prog Mater Sci 56(2):175–287

  4. 4

    Costas A, Florica C, Preda N, Apostol N, Kuncser A, Nitescu A, Enculescu I (2019) Radial heterojunction based on single ZnO–CuxO core–shell nanowire for photodetector applications. Sci Rep 9(1):5553(1)–5553(9)

  5. 5

    Park S, Kim S, Sun GJ, Byeon DB, Hyun SK, Lee WI, Lee C (2016) ZnO-core/ZnSe-shell nanowire UV photodetector. J Alloys Compd 658:459–464

  6. 6

    Ghamgosar P, Rigoni F, Gilzad Kohan M, You S, Abarca Morales E, Mazzaro R et al (2019) Self-powered photodetectors based on core–shell ZnO–Co3O4 nanowire heterojunctions. ACS Appl Mater Interfaces 11(26):23454–23462

  7. 7

    Singh N, Ponzoni A, Gupta RK, Lee PS, Comini E (2011) Synthesis of In2O3–ZnO core–shell nanowires and their application in gas sensing. Sens Actuators B Chem 160(1):1346–1351

  8. 8

    Park S, Ko H, Kim S, Lee C (2014) Role of the interfaces in multiple networked one-dimensional core–shell nanostructured gas sensors. ACS Appl Mater Interfaces 6(12):9595–9600

  9. 9

    Kim JH, Mirzaei A, Kim HW, Kim SS (2018) Low power-consumption CO gas sensors based on Au-functionalized SnO2-ZnO core–shell nanowires. Sens Actuators B Chem 267:597–607

  10. 10

    Karnati P, Akbar S, Morris PA (2019) Conduction mechanisms in one dimensional core–shell nanostructures for gas sensing: a review. Sens Actuators B Chem 295:127–143

  11. 11

    Tak Y, Hong SJ, Lee JS, Yong K (2009) Fabrication of ZnO/CdS core/shell nanowire arrays for efficient solar energy conversion. J Mater Chem 19(33):5945–5951

  12. 12

    Tang J, Huo Z, Brittman S, Gao H, Yang P (2011) Solution-processed core–shell nanowires for efficient photovoltaic cells. Nat Nanotechnol 6(9):568–571

  13. 13

    Boro B, Gogoi B, Rajbongshi BM, Ramchiary A (2018) Nano-structured TiO2/ZnO nanocomposite for dye-sensitized solar cells application: a review. Renew Sustain Energy Rev 81:2264–2270

  14. 14

    Dubrovskii VG, Cirlin GE, Ustinov VM (2009) Semiconductor nanowhiskers: synthesis, properties, and applications. Semiconductors 43(12):1539–1584

  15. 15

    Kavanagh KL (2010) Misfit dislocations in nanowire heterostructures. Semicond Sci Technol 25(2):024006(1)–024006(7)

  16. 16

    Jenichen B, Hilse M, Herfort J, Trampert A (2015) Facetted growth of Fe3Si shells around GaAs nanowires on Si (111). J Cryst Growth 427:21–23

  17. 17

    Nie A, Liu J, Li Q, Cheng Y, Dong C, Zhou W et al (2012) Epitaxial TiO2/SnO2 core–shell heterostructure by atomic layer deposition. J Mater Chem 22(21):10665–10671

  18. 18

    Nguyen BM, Swartzentruber B, Ro YG, Dayeh SA (2015) Facet-selective nucleation and conformal epitaxy of Ge shells on Si nanowires. Nano Lett 15(11):7258–7264

  19. 19

    Goldthorpe IA, Marshall AF, McIntyre PC (2008) Synthesis and strain relaxation of Ge-core/Si-shell nanowire arrays. Nano Lett 8(11):4081–4086

  20. 20

    Kavanagh KL, Salfi J, Savelyev I, Blumin M, Ruda HE (2011) Transport and strain relaxation in wurtzite InAs–GaAs core–shell heterowires. Appl Phys Lett 98(15):152103(1)–152103(3)

  21. 21

    Popovitz-Biro R, Kretinin A, Von Huth P, Shtrikman H (2011) InAs/GaAs core–shell nanowires. Cryst Growth Des 11(9):3858–3865

  22. 22

    Kavanagh KL, Saveliev I, Blumin M, Swadener G, Ruda HE (2012) Faster radial strain relaxation in InAs–GaAs core–shell heterowires. J Appl Phys 111(4):044301(1)–044301(9)

  23. 23

    Perillat-Merceroz G, Thierry R, Jouneau PH, Ferret P, Feuillet G (2012) Strain relaxation by dislocation glide in ZnO/ZnMgO core–shell nanowires. Appl Phys Lett 100(17):173102(1)–173102(4)

  24. 24

    Biermanns A, Rieger T, Bussone G, Pietsch U, Grützmacher D, Lepsa MI (2013) Axial strain in GaAs/InAs core–shell nanowires. Appl Phys Lett 102(4):043109(1)–043109(4)

  25. 25

    Dayeh SA, Tang W, Boioli F, Kavanagh KL, Zheng H, Wang J et al (2013) Direct measurement of coherency limits for strain relaxation in heteroepitaxial core/shell nanowires. Nano Lett 13(5):1869–1876

  26. 26

    Salehzadeh O, Kavanagh KL, Watkins SP (2013) Growth and strain relaxation of GaAs and GaP nanowires with GaSb shells. J Appl Phys 113(13):134309(1)–134309(7)

  27. 27

    Rieger T, Grützmacher D, Lepsa MI (2015) Misfit dislocation free InAs/GaSb core–shell nanowires grown by molecular beam epitaxy. Nanoscale 7(1):356–364

  28. 28

    Lewis RB, Nicolai L, Küpers H, Ramsteiner M, Trampert A, Geelhaar L (2016) Anomalous strain relaxation in core–shell nanowire heterostructures via simultaneous coherent and incoherent growth. Nano Lett 17(1):136–142

  29. 29

    Lin YC, Kim D, Li Z, Nguyen BM, Li N, Zhang S, Yoo J (2017) Strain-induced structural defects and their effects on the electrochemical performances of silicon core/germanium shell nanowire heterostructures. Nanoscale 9:1213–1220

  30. 30

    Lazarev S, Göransson DJO, Borgström M, Messing ME, Xu HQ, Dzhigaev D, Yefanov OM, Bauer S, Baumbach T, Feidenhans’l R, Samuelson L, Vartanyants IA (2019) Revealing misfit dislocations in InAsxP1−x–InP core–shell nanowires by x-ray diffraction. Nanotechnology 30:505703(1)–505703(11)

  31. 31

    Gutkin MYu, Ovid’ko IA, Sheinerman AG (2000) Misfit dislocations in wire composite solids. J Phys Condens Matter 12(25):5391–5401

  32. 32

    Sheinerman AG, Gutkin MYu (2001) Misfit disclinations and dislocation walls in a two-phase cylindrical composite. Physica Status Solidi (a) 184(2):485–505

  33. 33

    Ovid’ko IA, Sheinerman AG (2004) Misfit dislocation loops in composite nanowires. Philos Mag 84(20):2103–2118

  34. 34

    Raychaudhuri S, Yu ET (2006) Calculation of critical dimensions for wurtzite and cubic zinc blende coaxial nanowire heterostructures. J Vac Sci Technol B Microelectron Nanometer Struct Process Meas Phenom 24(4):2053–2059

  35. 35

    Raychaudhuri S, Yu ET (2006) Critical dimensions in coherently strained coaxial nanowire heterostructures. J Appl Phys 99(11):114308(1)–114308(7)

  36. 36

    Aifantis KE, Kolesnikova AL, Romanov AE (2007) Nucleation of misfit dislocations and plastic deformation in core/shell nanowires. Philos Mag 87(30):4731–4757

  37. 37

    Colin J (2010) Prismatic dislocation loops in strained core–shell nanowire heterostructures. Phys Rev B 82(5):054118(1)–054118(5)

  38. 38

    Wang X, Pan E, Chung PW (2010) Misfit dislocation dipoles in wire composite solids. Int J Plast 26:1415–1420

  39. 39

    Gutkin MYu, Kuzmin KV, Sheinerman AG (2011) Misfit stresses and relaxation mechanisms in a nanowire containing a coaxial cylindrical inclusion of finite length. Physica Status Solidi (b) 248(7):1651–1657

  40. 40

    Chu H, Zhou C, Wang J, Beyerlein IJ (2012) Misfit strain relaxation mechanisms in core/shell nanowires. JOM 64(10):1258–1262

  41. 41

    Haapamaki CM, Baugh J, LaPierre RR (2012) Critical shell thickness for InAs–AlxIn1−xAs(P) core–shell nanowires. J Appl Phys 112(12):124305(1)–124305(6)

  42. 42

    Salehzadeh O, Kavanagh KL, Watkins SP (2013) Geometric limits of coherent III–V core/shell nanowires. J Appl Phys 114(5):054301(1)–054301(8)

  43. 43

    Zhao YX, Fang QH, Liu YW (2013) Edge misfit dislocations in core–shell nanowire with surface/interface effects and different elastic constants. Int J Mech Sci 74:173–184

  44. 44

    Enzevaee C, Gutkin MYu, Shodja HM (2014) Surface/interface effects on the formation of misfit dislocation in a core–shell nanowire. Philos Mag 94(5):492–519

  45. 45

    Colin J (2015) Circular dislocation loop in a three-layer nanowire. Int J Solids Struct 63:114–120

  46. 46

    Gutkin MY, Smirnov AM (2015) Initial stages of misfit stress relaxation in composite nanostructures through generation of rectangular prismatic dislocation loops. Acta Mater 88:91–101

  47. 47

    Gutkin MY, Smirnov AM (2016) Initial stages of misfit stress relaxation through the formation of prismatic dislocation loops in GaN–Ga2O3 composite nanostructures. Phys Solid State 58(8):1611–1621

  48. 48

    Krasnitckii SA, Kolomoetc DR, Smirnov AM, Gutkin MYu (2018) Misfit stress relaxation in composite core–shell nanowires with parallelepiped cores using rectangular prismatic dislocation loops. J Phys Conf Ser 993(1):012021(1)–012021(5)

  49. 49

    Arjmand M, Benjamin C, Szlufarska I (2019) Analytical elastoplastic analysis of heteroepitaxial core–shell nanowires. AIP Adv 9(5):055119(1)–055119(9)

  50. 50

    Smirnov AM, Krasnitckii SA, Gutkin MYu (2020) Generation of misfit dislocations in a core–shell nanowire near the edge of prismatic core. Acta Mater 186:494–510

  51. 51

    Ovidko IA, Sheinerman AG (2002) Perfect, partial, and split dislocations in quantum dots. Phys Rev B 66:245309(1)–245309(8)

  52. 52

    Mikaelyan KN, Gutkin MYu, Borodin EN, Romanov AE (2019) Dislocation emission from the edge of a misfitting nanowire embedded in a free-standing nanolayer. Int J Solids Struct 161:127–135

  53. 53

    Gutkin MYu, Smirnov AM (2014) Generation of rectangular prismatic dislocation loops in shells and cores of composite nanoparticles. Phys Solid State 56(4):731–738

  54. 54

    Gutkin MYu, Krasnitckii SA, Smirnov AM, Kolesnikova AL, Romanov AE (2015) Dislocation loops in solid and hollow semiconductor and metal nanoheterostructures. Phys Solid State 57(6):1177–1182

  55. 55

    Ding Y, Fan F, Tian Z, Wang Z (2010) Atomic structure of Au–Pd bimetallic alloyed nanoparticles. J Am Chem Soc 132:12480–12486

  56. 56

    Bhattarai N, Casillas G, Ponce A, Jose-Yacaman M (2013) Strain-release mechanisms in bimetallic core–shell nanoparticles as revealed by Cs-corrected STEM. Surf Sci 609:161–166

  57. 57

    Ding Y, Sun X, Wang ZL, Sun S (2012) Misfit dislocations in multimetallic core–shelled nanoparticles. Appl Phys Lett 100(11):111603(1)–111603(4)

  58. 58

    Zou WN, He QC, Zheng QS (2012) Inclusions in a finite elastic body. Int J Solids Struct 49(13):1627–1636

  59. 59

    Krasnitckii SA, Smirnov AM, Gutkin MYu (2016) Misfit stresses in a core–shell nanowire with core in the form of long parallelepiped. J Phys Conf Ser 690(1):012022(1)–012022(6)

  60. 60

    Krasnitckii SA, Kolomoetc DR, Smirnov AM, Gutkin MYu (2017) Misfit stresses in a composite core–shell nanowire with an eccentric parallelepipedal core subjected to one-dimensional cross dilatation eigenstrain. J Phys Conf Ser 816(1):012043(1)–012043(6)

  61. 61

    Krasnitckii SA (2019) Dislocation mechanisms of residual stress relaxation in low-dimensional heterogeneous nanostructures. PhD thesis; St. Petersburg, Peter the Great St. Petersburg Polytechnic University, pp 79–81 (in Russian); https://disser.herzen.spb.ru/Preview/Vlojenia/000000569_Disser.pdf

  62. 62

    Kolesnikova AL, Soroka RM, Romanov AE (2013) Defects in the elastic continuum: classification, fields and physical analogies. Mater Phys Mech 17:71–91

  63. 63

    Gutkin MYu, Ovid’ko IA, Sheinerman AG (2003) Misfit dislocations in composites with nano-wires. J Phys Condens Matter 15:3539–3554

  64. 64

    Hirth JP, Lothe J (1982) Theory of dislocations, 2nd edn. Wiley, Hoboken

Download references

Acknowledgements

This work was supported by the grant of Russian Science Foundation No. 19-19-00617.

Author information

Correspondence to S. A. Krasnitckii.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1

Appendix 1

The axial stress in a core–shell NW with a cylindrical core (Fig. 1a) subjected to a 3D dilatation eigenstrain is

$$ \sigma_{zz}^{0} = 4\pi \,C\,\left[ {\frac{{R_{0}^{2} - R_{{}}^{2} }}{{R_{{}}^{2} }}{\text{H}}(R_{0}^{{}} - r) + \frac{{R_{0}^{2} }}{{R_{{}}^{2} }}{\text{H}}(r - R_{0}^{{}} )} \right] , $$
(8)

where r is the polar radius, R0 and R are the radii of the core and shell, respectively, \( C = G\,f(1 + \nu )/[2\pi (1 - \nu )] \), f is the misfit parameter, and H(x) is the Heaviside function (H(x) = 1 for x > 0 and H(x) = 0 for x < 0).

The axial stress in a core–shell NW with a prismatic core of hexagonal cross section (Fig. 1b), subjected to a 3D dilatation eigenstrain, is

$$ \sigma_{zz}^{6} = 2C\,\left( {[{}_{{}}^{\infty } \varPsi_{zz}^{\text{hx}} + {}_{{}}^{*} \varPsi_{zz}^{\text{hx}} ]_{{k = \sqrt 3 /3,\,c = - R_{0} }}^{{k = - \sqrt 3 /3,\,c = R_{0} }} \left| {_{{y_{0} = \,0}}^{{y_{0} = \sqrt 3 R/2}} } \right. + [{}_{{}}^{\infty } \varPsi_{zz}^{\text{hx}} + {}_{{}}^{*} \varPsi_{zz}^{\text{hx}} ]_{{k = - \sqrt 3 /3,\,c = - R_{0} }}^{{k = \sqrt 3 /3,\,c = R_{0} }} \left| {_{{y_{0} = - \sqrt 3 R/2}}^{{y_{0} = 0}} } \right.} \right) $$
(9)

with

$$ {}_{{}}^{\infty } \varPsi_{zz}^{\text{hx}} = - \frac{\pi }{2}\text{sgn} \frac{{y - y_{0} }}{x - k\,y - c} , $$
(10)
$$ \begin{aligned} {}_{{}}^{ * } \varPsi_{zz}^{\text{hx}} &= - \cos \psi \,\left[ {q^{2} \cos (2\theta + \psi ) + \frac{4}{{p^{2} }}\left( {\sin (2\varphi + \psi )\ln \sqrt {p^{2} q^{2} - 2pq\cos (\varphi - \theta ) + 1} } \right.} \right. \\ &\quad \left. { + \cos (2\varphi + \psi )\,\,\tan^{-1} \left. {\frac{pq\sin (\varphi - \theta )}{1 - pq\cos (\varphi - \theta )}} \right)} \right], \\ \end{aligned} $$
(11)

where p = r/R, q = ρ/R, \( \rho = \sqrt {x_{0}^{2} + y_{0}^{2} } \), \( \varphi = \tan^{-1} [y/x] \), \( \theta = \tan^{-1} [y_{0} /x_{0} ] \), \( \psi = \tan^{-1} [k] \), (x0, y0) and (ρ, θ) are the Cartesian and polar coordinates of a hexagonal corner, respectively, k and c are the slope and the y-intercept of the side.

The axial stress in a core–shell NW with a prismatic core of square cross section (Fig. 1c), subjected to a 3D dilatation eigenstrain, is

$$ \sigma_{zz}^{4} = 2C\;[{}_{{}}^{\infty } \varPsi_{zz}^{\text{sq}} + {}_{{}}^{*} \varPsi_{zz}^{\text{sq}} ]_{{x_{0} = -L/2 }}^{{x_{0} = L/2 }} \left| {_{{y_{0} = -L/2 }}^{{y_{0} = L/2 }} } \right. $$
(12)

with

$$ {}_{{}}^{\infty } \varPsi_{zz}^{\text{sq}} = - \frac{\pi }{2}\text{sgn} \frac{{y - y_{0} }}{{x - x_{0} }} , $$
(13)
$$ \begin{aligned} {}_{{}}^{*} \varPsi_{zz}^{\text{sq}} &= - q^{2} \sin 2\theta + \frac{4}{{p^{2} }}\left[ {\sin 2\varphi \ln \sqrt {p^{2} q^{2} - 2pq\cos (\varphi - \theta ) + 1} } \right. \\ & \quad \left. { - \cos 2\varphi \tan^{-1} \frac{pq\sin (\varphi - \theta )}{1 - pq\cos (\varphi - \theta )}} \right]. \\ \end{aligned} $$
(14)

The axial stress in a core–shell NW with a prismatic core of triangular cross section (Fig. 1d), subjected to a 3D dilatation eigenstrain, is

$$ \sigma_{zz}^{3} = 2C\;[{}_{{}}^{\infty } \varPsi_{zz}^{\text{tr}} + {}_{{}}^{*} \varPsi_{zz}^{\text{tr}} ]\,_{{k = {{\sqrt 3 } \mathord{\left/ {\vphantom {{\sqrt 3 } 3}} \right. \kern-0pt} 3},\;c = {{ - \sqrt 3 R_{0} } \mathord{\left/ {\vphantom {{ - \sqrt 3 R_{0} } 3}} \right. \kern-0pt} 3}}}^{{k = {{ - \sqrt 3 } \mathord{\left/ {\vphantom {{ - \sqrt 3 } 3}} \right. \kern-0pt} 3},\;c = {{\sqrt 3 R_{0} } \mathord{\left/ {\vphantom {{\sqrt 3 R_{0} } 3}} \right. \kern-0pt} 3}}} \left| {_{{y_{0} = - R_{0} /2}}^{{y_{0} = R_{0} }} } \right. , $$
(15)
$$ {}_{{}}^{\infty } \varPsi_{zz}^{\text{tr}} = - \frac{\pi }{2}\text{sgn} \frac{{y - y_{0} }}{x - k\,y - c} , $$
(16)
$$ \begin{aligned} {}_{{}}^{ * } \varPsi_{zz}^{\text{tr}} & = - \cos \psi \left[ {q^{2} \cos (2\theta + \psi ) + \frac{4}{{p^{2} }}\left( {\sin (2\varphi + \psi )\ln \sqrt {p^{2} q^{2} - 2pq\cos (\varphi - \theta ) + 1} } \right.} \right. \\ & \quad \left. { + \cos (2\varphi + \psi )\tan^{-1} \left. {\frac{pq\sin (\varphi - \theta )}{1 - pq\cos (\varphi - \theta )}} \right)} \right]. \\ \end{aligned} $$
(17)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Krasnitckii, S.A., Smirnov, A.M. & Gutkin, M.Y. Axial misfit stress relaxation in core–shell nanowires with polyhedral cores through the nucleation of misfit prismatic dislocation loops. J Mater Sci (2020). https://doi.org/10.1007/s10853-020-04401-3

Download citation