Advertisement

Fabrication of Yb-doped TiO2 using liquid phase plasma process and its photocatalytic degradation activity of naproxen

  • Hye-Jin Bang
  • Heon Lee
  • Young-Kwon Park
  • Hangun Kim
  • Hyung-Ho Ha
  • Young Hyun Yu
  • Sun-Jae Kim
  • Sang-Chul JungEmail author
Advanced Nano Materials
  • 38 Downloads

Abstract

Photocatalysts responding to visible light were prepared by doping ytterbium (Yb) to TiO2 powder by LPP method. Yb2O3 nanoparticles were uniformly precipitated on the surface of TiO2 powder, and when the precursor concentration was increased, the precipitated Yb2O3 nanoparticles increased. The precipitated Yb element lowered the band gap energy of Yb-doped TiO2 photocatalyst (YTP) by 0.07 to 0.14 eV compared to bare TiO2. YTPs degraded naproxen (NPX) better than bare TiO2, especially under blue LED light (maximum wavelength 470 nm), and YTP containing higher Yb elements showed higher decomposition activity. NPX was decomposed into CO2 and H2O by decarboxylation and demethylation by hydroxyl radicals generated from TiO2 photocatalysts, suggesting a degradation pathway based on the three intermediates detected by LC/MS analysis.

Notes

Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2018R1D1A1B07049595).

References

  1. 1.
    Santos JL, Aparicio I, Alonso E, Callejón M (2005) Simultaneous determination of pharmaceutically active compounds in wastewater samples by solid phase extraction and high-performance liquid chromatography with diode array and fluorescence detectors. Anal Chim Acta 550:116–122CrossRefGoogle Scholar
  2. 2.
    Lin WC, Chen HC, Ding WH (2005) Determination of pharmaceutical residues inwaters by solid-phase extraction and large-volume on-line derivatization with gas chromatography-mass spectrometry. J Chromatogr A 1065:279–285CrossRefGoogle Scholar
  3. 3.
    Luo Y, Guo W, Ngo HH, Nghiem LD, Hai FI, Zhang J, Liang S, Wang XC (2014) A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Sci Total Environ 473–474:619–641CrossRefGoogle Scholar
  4. 4.
    Martinez-Sena T, Armenta S, Guardia M, Esteve-Turrillas FA (2016) Determination of non-steroidal anti-inflammatory drugs in water and urine using selective molecular imprinted polymer extraction and liquid chromatography. J Pharm Biomed Anal 131:48–53CrossRefGoogle Scholar
  5. 5.
    Rossi R (2013) Australian medicines handbook, 2013rd edn. The Australian Medicines Handbook Unit Trust, AdelaideGoogle Scholar
  6. 6.
    Joint Formulary Committee (2013) British national formulary. Pharmaceutical Press, London, pp 665–673Google Scholar
  7. 7.
    Carballa M, Omil F, Lema JM, Llompartb M, Garciá-Jares C, Rodriguez I, Gomez M, Ternes T (2004) Behavior of pharmaceuticals, cosmetics and hormones in a sewage treatment plant. Water Res 38:2918–2926CrossRefGoogle Scholar
  8. 8.
    Xia K, Bhandari A, Das K, Pillar G (2005) Occurrence and fate of pharmaceuticals and personal care products (PPCPs) in biosolids. J Environ Qual 34:91–104CrossRefGoogle Scholar
  9. 9.
    Kim SD, Cho J, Kim IS, Vanderford BJ, Snyder SA (2007) Occurrence and removal of pharmaceuticals and endocrine disruptors in South Korean surface, drinking, and waste waters. Water Res 41:1013–1021CrossRefGoogle Scholar
  10. 10.
    Hassani A, Khataee A, Karaca S, Karaca C, Gholami P (2017) Sonocatalytic degradation of ciprofloxacin using synthesized TiO2 nanoparticles on montmorillonite. Ultrason Sonochem 35:251–262CrossRefGoogle Scholar
  11. 11.
    Boreen AL, Arnold WA, McNeill K (2004) Photochemical fate of sulfa grugs in the aquatic environment: sulfa drugs containing five-membered heterocyclic groups. Environ Sci Technol 34:3933–3940CrossRefGoogle Scholar
  12. 12.
    Lee H, Park YK, Kim SJ, Kim BH, Yoon HS, Jung SC (2016) Rapid degradation of methyl orange using hybrid advanced oxidation process and its synergistic effect. J Ind Eng Chem 35:205–210CrossRefGoogle Scholar
  13. 13.
    Venny GS, Ng HK (2012) Current status and prospects of Fenton oxidation for the decontamination of persistent organic pollutants (POPs) in soils. Chem Eng J 213:295–317CrossRefGoogle Scholar
  14. 14.
    Kocher M, Daubler TK, Harth E, Scherf U, Gugel A, Neher D (1998) Photoconductivity of an inorganic/organic composite containing dye-sensitized nanocrystalline titanium dioxide. Appl Phys Lett 72:650–654CrossRefGoogle Scholar
  15. 15.
    Gopidas KR, Bohorquez M, Kamat PV (1990) Photophysical and photochemical aspects of coupled semiconductors: charge-transfer processes in colloidal cadmium sulfide-titania and cadmium sulfide-silver (I) iodide systems. J Phys Chem 94:6435–6440CrossRefGoogle Scholar
  16. 16.
    Choi W, Termin A, Hoffman MR (1994) The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics. J Phys Chem 98:13669–13679CrossRefGoogle Scholar
  17. 17.
    Kim DH, Woo SI, Moon SH, Kim HD, Kim BY, Cho JH, Joh YG, Kim EC (2005) Effect of Co/Fe co-doping in TiO2 rutile prepared by solid state reaction. Solid State Commun 136:554–558CrossRefGoogle Scholar
  18. 18.
    Umebayashi T, Yamaki T, Itoh H, Asai K (2002) Band gap narrowing of titanium dioxide by sulfur doping. Appl Phys Lett 81:454–456CrossRefGoogle Scholar
  19. 19.
    Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y (2001) Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293:269–271CrossRefGoogle Scholar
  20. 20.
    Li JG, Wang X, Watanabe K, Ishigaki T (2006) Phase structure and luminescence properties of Eu3+-doped TiO2 nanocrystals synthesized by Ar/O2 radio frequency thermal plasma oxidation of liquid precursor mists. J Phys Chem B 110:1121–1127CrossRefGoogle Scholar
  21. 21.
    Jeon S, Braun P (2003) Hydrothermal synthesis of Er-doped luminescent TiO2 nanoparticles. Chem Mater 15:1256–1263CrossRefGoogle Scholar
  22. 22.
    Pal M, Pal U, Gonzalez RS, Mora ES, Santiago P (2009) Synthesis and photocatalytic activity of Yb doped TiO2 nanoparticles under visible light. J Nano Res-SW 5:193–200CrossRefGoogle Scholar
  23. 23.
    Lee H, Park YK, Kim SJ, Kim BH, Jung SC (2015) Titanium dioxide modification with cobalt oxide nanoparticles for photocatalysis. J Ind Eng Chem 32:259–263CrossRefGoogle Scholar
  24. 24.
    Lee H, Kim BH, Park YK, An KH, Choi YJ, Jung SC (2016) Synthesis of cobalt oxide-manganese oxide on activated carbon electrodes for electrochemical capacitor application using a liquid phase plasma method. Int J Hydrogen Energy 40:7582–7589CrossRefGoogle Scholar
  25. 25.
    Lee H, Park IS, Bang HJ, Park YK, Kim H, Ha HH, Kim BJ, Jung SC (2019) Fabrication of Gd-La codoped TiO2 composite via a liquid phase plasma method and its application as visible-light photocatalysts. Appl Surf Sci 471:893–899CrossRefGoogle Scholar
  26. 26.
    Lee WJ, Jeong S, Lee H, Kim BJ, An KH, Park YK, Jung SC (2017) Facile synthesis of iron-ruthenium bimetallic oxide nanoparticles on carbon nanotube composites by liquid phase plasma method for supercapacitor. Korean J Chem Eng 34:2993–2998CrossRefGoogle Scholar
  27. 27.
    Jeong S, Chung KH, Lee H, Park H, Jeon KJ, Park YK, Jung SC (2017) Enhancement of hydrogen evolution from water photocatalysis using liquid phase plasma on metal oxide-loaded photocatalysts. ACS Sustain Chem Eng 5:3659–3666CrossRefGoogle Scholar
  28. 28.
    Kim SC, Park YK, Kim BH, Kim H, Lee WJ, Lee H, Jung SC (2018) Facile precipitation of tin oxide nanoparticles on graphene sheet by liquid phase plasma method for enhanced electrochemical properties. Korean J Chem Eng 35:750–756CrossRefGoogle Scholar
  29. 29.
    Chung KH, Jeong S, Kim BJ, An KH, Park YK, Jung SC (2018) Enhancement of photocatalytic hydrogen production by liquid phase plasma irradiation on metal-loaded TiO2/carbon nanofiber photocatalysts. Int J Hydrogen Energy 43:1422–1429Google Scholar
  30. 30.
    Pitchaimuthu S, Honda K, Suzuki S, Naito A, Suzuki N, Katsumata K, Nakata K, Ishida N, Kitamura N, Idemoto Y, Kondo T, Yuasa M, Takai O, Ueno T, Saito N, Fujishima A, Terashima C (2018) Solution plasma process-derived defect-induced heterophase anatase/brookite TiO2 nanocrystals for enhanced gaseous photocatalytic performance. ACS Omega 3:898–905CrossRefGoogle Scholar
  31. 31.
    Horikoshi S, Serpone N (2017) In-liquid plasma: a novel tool in the fabrication of nanomaterials and in the treatment of wastewaters. RSC Adv 7:47196–47218CrossRefGoogle Scholar
  32. 32.
    Apopei P, Catrinescu C, Teodosiu C, Royer SC (2014) Mixed-phase TiO2 photocatalysts: crystalline phase isolation andreconstruction, characterization and photocatalytic activity in theoxidation of 4-chlorophenol from aqueous effluent. Appl Catal B Environ 160–161:374–382CrossRefGoogle Scholar
  33. 33.
    Nassoko D, Li YF, Li JL, Li X, Yu Y (2012) Neodymium-doped TiO2 with anatase and brookite two phases: mechanism for photocatalytic activity enhancement under visible light and the role of electron. Int J Photoenergy 716087:1–10CrossRefGoogle Scholar
  34. 34.
    Anwer S, Bharath G, Iqbal S, Qian H, Masood T, Liao K, Cantwell WJ, Zhang J, Zheng L (2018) Synthesis of edge-site selectively deposited Au nanocrystals on TiO2 nanosheets: an efficient heterogeneous catalyst with enhanced visible-light photoactivity. Electrochim Acta 283:1095–1104CrossRefGoogle Scholar
  35. 35.
    Ma Y, Xing M, Zhang J, Tian B, Chen F (2012) Synthesis of well ordered mesoporous Yb, N co-doped TiO2 with superior visible photocatalytic activity. Microporous Mesoporous Mater 156:145–152CrossRefGoogle Scholar
  36. 36.
    Yu H, Zhao Y, Zhou C, Shang L, Peng Y, Cao Y, Wu LZ, Tung CH, Zhang T (2014) Carbon quantum dots/TiO2 composites for efficient photocatalytic hydrogen evolution. J Mater Chem A 2:3344–3351CrossRefGoogle Scholar
  37. 37.
    Pal M, Pal U, Gonzalez RS, Mora ES, Santiago P (2009) Synthesis and photocatalytic activity of Yb doped TiO2 nanoparticles under visible light. J Nano Res 5:193–200CrossRefGoogle Scholar
  38. 38.
    Saqib N, Adnam R, Shah I (2016) A mini-review on rare earth metal-doped TiO2 for photocatalytic remediation of wastewater. Environ Sci Pollut Res 23:15941–15951CrossRefGoogle Scholar
  39. 39.
    Saif M, Abdel-Mottaleb MSA (2007) Titanium dioxide nanomaterial doped with trivalent lanthanide ions of Tb Eu and Sm: preparation, characterization and potential applications. Inorg Chim Acta 360:2863–2874CrossRefGoogle Scholar
  40. 40.
    Méndez-Arriaga F, Gimenez J, Esplugas S (2008) Photolysis and TiO2 photocatalytic treatment of naproxen: degradation mineralization, intermediates and toxicity. J Adv Oxid Technol 11:436–445Google Scholar
  41. 41.
    Jallouli N, Elghniji K, Hentati O, Ribeiro AR, Silva AMT, Ksibi M (2016) UV and solar photo-degradation of naproxen: TiO2 catalyst effect, reaction kinetics, products identification and toxicity assessment. J Hazard Mater 304:329–336CrossRefGoogle Scholar
  42. 42.
    Fan G, Zhan J, Luo J, Zhang J, Chen Z, You Y (2019) Photocatalytic degradation of naproxen by a H2O2-modified titanate nanomaterial under visible light irradiation. Catal Sci Technol 9:4614–4628CrossRefGoogle Scholar
  43. 43.
    Chin CM, Chen TY, Lee M, Chang CF, Liu YT, Kuo YT (2014) Photolysis and TiO2 photocatalytic treatment of naproxen: degradation mineralization, intermediates and toxicity. J Hazard Mater 277:110–119CrossRefGoogle Scholar
  44. 44.
    Kanakaraju D, Motti CA, Glass BD, Oelgemöller M (2015) TiO2 photocatalysis of naproxen: effect of the water matrix, anions and diclofenac on degradation rates. Chemosphere 139:579–588CrossRefGoogle Scholar
  45. 45.
    Dulova N, Kattel E, Trapido M (2017) Degradation of naproxen by ferrous ion-activated hydrogen peroxide, persulfate and combined hydrogen peroxide/persulfate processes: the effect of citric acid addition. Chem Eng J 318:254–263CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Department of Environmental EngineeringSunchon National UniversitySunchonRepublic of Korea
  2. 2.School of Environmental EngineeringUniversity of SeoulSeoulRepublic of Korea
  3. 3.College of PharmacySunchon National UniversitySunchonRepublic of Korea
  4. 4.Faculty of Nanotechnology and Advanced Materials EngineeringSejong UniversitySeoulRepublic of Korea

Personalised recommendations