Facile synthesis of high-crystalline Bi2Se3 nanoribbons without Se vacancies and their properties

  • Hui YanEmail author
  • Sai Lin
  • Rukang Zhang
  • Heng LiEmail author
  • Bin Fu
  • Jiwen Liu
  • Lili Liu
  • Sándor Kunsági-Máté
  • Yukai AnEmail author
Electronic materials


The avoiding of impurities and high intrinsic defects in 3D TIs has brought great challenges to chemists and materials scientists. In this paper, a feasible method of vapor-phase deposition was proposed for preparing high-performance Bi2Se3 nanoribbons, which can effectively avoid Se vacancies without introducing new impurity species. It was found that the length and density of Bi2Se3 nanoribbons can be controlled by adjusting the heating temperature. Importantly, the growth temperature which has often been ignored plays a key role in the stoichiometric ratio and crystallinity of the nanostructures. We obtained a large area of high-crystalline Bi2Se3 nanoribbons with standard stoichiometric ratio and flattened surface just through changing the two temperatures. The properties of the synthesized nanoribbons with different stoichiometric ratios have been investigated systematically. The blueshift of the Raman modes is probably attributed to the decrease in Se vacancy defects which strengthens the electron–phonon interaction between atoms. While the band gap shows a redshift behavior with the decrease in Se vacancy defects speculated from the absorption spectra, this facile method can be applied to synthesize other 3D TIs with standard stoichiometric ratio without introducing new impurities, which could lay a strong foundation toward large-scale production for practical applications of 3D TIs.



The authors gratefully acknowledge the financial support of the National Natural Science Foundation of China (11604242, 51602218), the Tianjin Research Program of Application Foundation and Advanced Technology of China (18JCQNJC02500, 18JCZDJC96900, 18JCQNJC02400), Fundamental Research Funds for the Central Universities (20720170084) and Financial Support of the GINOP (2.3.2-15-2016-00022).

Author contributions

The manuscript was written through the contributions of all authors. All authors have given approval to the final version of the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare no competing financial interest.

Supplementary material

10853_2020_4354_MOESM1_ESM.doc (524 kb)
Supplementary material 1 (DOC 449 kb)


  1. 1.
    Freysoldt C, Grabowski B, Hickel T, Neugebauer J, Kresse G, Janotti A, Van deWalle CG (2014) First-principles calculations for point defects in solids. Rev Mod Phys 86:253CrossRefGoogle Scholar
  2. 2.
    Voyles PM, Muller DA, Grazul JL, Citrin PH, Gossmann HJL (2002) Atomic-scale imaging of individual dopant atoms and clusters in highly n-type bulk Si. Nature 416:826–829CrossRefGoogle Scholar
  3. 3.
    Li H, Cao J, Zheng W, Chen Y, Wu D, Dang W, Wang K, Peng H, Liu Z (2012) Controlled synthesis of topological insulator nanoplate arrays on mica. J Am Chem Soc 134:6132–6135CrossRefGoogle Scholar
  4. 4.
    Tian W, Yu W, Shi J, Wang Y (2017) The property, preparation and application of topological insulators: a review. Materials 10:814CrossRefGoogle Scholar
  5. 5.
    Zhang H, Liu CX, Qi XL, Dai X, Fang Z, Zhang S-C (2009) Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat Phys 5:438–442CrossRefGoogle Scholar
  6. 6.
    Xia Y, Qian D, Hsieh D, Wray L, Pal A, Lin H, Bansil A, Grauer D, Hor YS, Cava RJ, Hasan MZ (2009) Observation of a large-gap topological-insulator class with a single Dirac cone on the surface. Nat Phys 5:398–402CrossRefGoogle Scholar
  7. 7.
    Chen YL, Analytis JG, Chu JH, Liu ZK, Mo S-K, Qi XL, Zhang HJ, Lu DH, Dai X, Fang Z, Zhang SC, Fisher IR, Hussain Z, Shen Z-X (2009) Experimental realization of a three-dimensional topological insulator, Bi2Te3. Science 325:178–181CrossRefGoogle Scholar
  8. 8.
    Dai J, West D, Wang X, Wang Y, Kwok D, Cheong S-W, Zhang SB, Wu W (2016) Toward the intrinsic limit of the topological insulator Bi2Se3. Phys Rev Lett 117:106401CrossRefGoogle Scholar
  9. 9.
    Chen ZY, Zhao L, Park K, Garcia TA, Tamargo MC, Krusin-Elbaum L (2015) Robust topological interfaces and charge transfer in epitaxial Bi2Se3/II–VI semiconductor superlattices. Nano Lett 15:6365–6370CrossRefGoogle Scholar
  10. 10.
    Taskin AA, Sasaki S, Segawa K, Ando Y (2012) Achieving surface quantum oscillations in topological insulator thin films of Bi2Se3. Adv Mater 24:5581–5585CrossRefGoogle Scholar
  11. 11.
    Walsh LA, Hinkle CL (2017) Van Der Waals epitaxy: 2D materials and topological insulators. Appl Mater Today 9:504–515CrossRefGoogle Scholar
  12. 12.
    Spataru CD, Leonard F (2014) Fermi-level pinning, charge transfer, and relaxation of spin-momentum locking at metal contacts to topological insulators. Phys Rev B 90:085115CrossRefGoogle Scholar
  13. 13.
    Lang M, He L, Xiu F, Yu X, Tang J, Wang Y, Kou X, Jiang W, Fedorov AV, Wang KL (2012) Revelation of topological surface states in Bi2Se3 thin films by in situ AL passivation. ACS Nano 6:295–302CrossRefGoogle Scholar
  14. 14.
    Hasan MZ, Kane CL (2010) Colloquium: topological insulators. Rev Mod Phys 82:3045–3067CrossRefGoogle Scholar
  15. 15.
    Scanlon DO, King PDC, Singh RP, de la Torre A, Walker SM, Balakrishnan G, Baumberger F, Catlow CRA (2012) Controlling bulk conductivity in topological insulators: key role of anti-site defects. Adv Mater 24:2154–2158CrossRefGoogle Scholar
  16. 16.
    Wu KK, Ramachandran B, Kuo YK, Sankar R, Chou FC (2016) Influence of induced defects on transport properties of the Bridgman-grown Bi2Se3-based single crystals. J Alloys Compd 682:225–231CrossRefGoogle Scholar
  17. 17.
    Koumoulis D, Leung B, Chasapis TC, Taylor R, King D, Kanatzidis MG, Bouchard LS (2014) Understanding bulk defects in topological insulators from nuclear-spin interactions. Adv Funct Mater 24:1519–1528CrossRefGoogle Scholar
  18. 18.
    Zhang JS, Chang CZ, Zhang ZC, Wen J, Feng X, Li K, Liu MH, He K, Wang LL, Chen X, Xue QK, Ma XC, Wang YY (2011) Band structure engineering in (Bi1−xSbx)2Te3 ternary topological insulators. Nat Commun 2:574CrossRefGoogle Scholar
  19. 19.
    Pu XY, Zhao K, Liu YZ, Wei T, Jin R, Yang XS, Zhao Y (2017) Structural and transport properties of iridium-doped Bi2Se3 topological insulator crystals. J Alloys Compd 694:272–275CrossRefGoogle Scholar
  20. 20.
    Hsieh D, Xia Y, Qian D, Wray L, Dil JH, Meier F, Osterwalder J, Patthey L, Checkelsky JG, Ong NP, Fedorov AV, Lin H, Bansil A, Grauer D, Hor YS, Cava RJ, Hasan MZ (2009) A tunable topological insulator in the spin helical Dirac transport regime. Nature 460:1101–1105CrossRefGoogle Scholar
  21. 21.
    Kim D, Cho S, Butch NP, Syers P, Kirshenbaum K, Adam S, Paglione J, Fuhrer MS (2012) Surface conduction of topological Dirac electrons in bulk insulating Bi2Se3. Nat Phys 8:459–463CrossRefGoogle Scholar
  22. 22.
    Eschbach M, Mlynczak E, Kellner J, Kampmeier J, Lanius M, Neumann E, Weyrich C, Gehlmann M, Gospodaric P, Doring S, Mussler G, Demarina N, Luysberg M, Bihlmayer G, Schapers T, Plucinski L, Blugel S, Morgenstern M, Schneider CM, Grutzmacher D (2015) Realization of a vertical topological p–n junction in epitaxial Sb2Te3/Bi2Te3 heterostructures. Nat Commun 6:8816CrossRefGoogle Scholar
  23. 23.
    Beidenkopf H, Roushan P, Seo J, Gorman L, Drozdov I, Hor YS, Cava RJ, Yazdani A (2011) Spatial fluctuations of helical Dirac fermions on the surface of topological insulators. Nat Phys 7:939–943CrossRefGoogle Scholar
  24. 24.
    Cui HM, Liu H, Wang JY, Li X, Han F, Boughton RI (2004) Sonochemical synthesis of bismuth selenide nanobelts at room temperature. J Cryst Growth 271:456–461CrossRefGoogle Scholar
  25. 25.
    Liu Y, Cao L, Zhong J, Yu J, He J, Liu Z (2019) Synthesis of bismuth selenide nanoplates by solvothermal methods and its stacking optical properties. J Appl Phys 125:035302CrossRefGoogle Scholar
  26. 26.
    Li HD, Gao L, Li H, Wang GY, Wu J, Zhou ZH, Wang ZM (2013) Growth and band alignment of Bi2Se3 topological insulator on H-terminated Si(111) van der Waals surface. Appl Phys Lett 102:074106CrossRefGoogle Scholar
  27. 27.
    Lin YF, Chang HW, Lu SY, Liu CW (2007) Preparation, characterization, and electrophysical properties of nanostructured BiPO4 and Bi2Se3 derived from a structurally characterized, single-source precursor Bi[Se2P(OiPr)2]3. J Phys Chem C 111:18538–18544CrossRefGoogle Scholar
  28. 28.
    Kong DS, Randel JC, Peng HL, Cha JJ, Meister S, Lai KJ, Chen YL, Shen ZX, Manoharan HC, Cui Y (2010) Topological insulator nanowires and nanoribbons. Nano Lett 10:329–333CrossRefGoogle Scholar
  29. 29.
    Park Y-S, Lee JS (2014) Synthesis of single-crystalline topological insulator Bi2Se3 nanomaterials with various morphologies. J Nanopart Res 16:2226CrossRefGoogle Scholar
  30. 30.
    Li M, Wang Z, Yang L, Pan D, Li D, Gao XPA, Zhang Z (2018) Growth and quantum transport properties of vertical Bi2Se3 nanoplate films on Si substrates. Nanotechnology 29:315706CrossRefGoogle Scholar
  31. 31.
    Wang F, Li L, Huang W, Li L, Jin B, Li H, Zhai T (2018) Submillimeter 2D Bi2Se3 flakes toward high-performance infrared photodetection at optical communication wavelength. Adv Funct Mater 28:1802707CrossRefGoogle Scholar
  32. 32.
    Sun Z, Man B, Yang C, Liu M, Jiang S, Zhang C, Zhang J, Liu F, Xu Y (2016) Selenium-assisted controlled growth of graphene–Bi2Se3 nanoplates hybrid Dirac materials by chemical vapor deposition. Appl Surf Sci 365:357–363CrossRefGoogle Scholar
  33. 33.
    Song C-L, Wang Y-L, Jiang Y-P, Zhang Y, Chang C-Z, Wang L, He K, Chen X, Jia J-F, Wang Y, Fang Z, Dai X, Xie X-C, Qi X-L, Zhang S-C, Xue Q-K, Ma X (2010) Topological insulator Bi2Se3 thin films grown on double-layer graphene by molecular beam epitaxy. Appl Phys Lett 97:143118CrossRefGoogle Scholar
  34. 34.
    Zhang C, Liu M, Man BY, Jiang SZ, Yang C, Chen CS, Feng DJ, Bi D, Liu FY, Qiu HW, Zhang JX (2014) Facile fabrication of graphene–topological insulator Bi2Se3 hybrid Dirac materials via chemical vapor deposition in Se-rich conditions. Cryst Eng Commun 16:8941–8945CrossRefGoogle Scholar
  35. 35.
    Liu M, Liu FY, Man BY, Bi D, Xu XY (2014) Multi-layered nanostructure Bi2Se3 grown by chemical vapor deposition in selenium-rich atmosphere. Appl Surf Sci 317:257–261CrossRefGoogle Scholar
  36. 36.
    Yan Y, Liao ZM, Zhou YB, Wu HC, Bie YQ, Chen JJ, Meng J, Wu XS, Yu DP (2013) Synthesis and quantum transport properties of Bi2Se3 topological insulator nanostructures. Sci Rep 3:1264CrossRefGoogle Scholar
  37. 37.
    Manshu H, Ma J, Xu H, Liu Y (2015) Two-step vapor transport deposition of large-size bridge-like Bi2Se3 nanostructures. Cryst Eng Commun 17:8449–8456CrossRefGoogle Scholar
  38. 38.
    Jeon JH, Song M, Kim H, Jang W-J, Park J-Y, Yoon S, Kahng S-J (2014) Quintuple layer Bi2Se3 thin films directly grown on insulating SiO2 using molecular beam epitaxy. Appl Surf Sci 316:42–45CrossRefGoogle Scholar
  39. 39.
    Huang F-T, Chu M-W, Kung HH, Lee WL, Sankar R, Liou S-C, Wu KK, Kuo YK, Chou FC (2012) Nonstoichiometric doping and Bi antisite defect in single crystal Bi2Se3. Phys Rev B 86:081104(R)CrossRefGoogle Scholar
  40. 40.
    Jia G, Wang X, Li Q, Yao J (2014) Bi-rich grow topological insulator Bi2Se3 nanodomains structures. Superlattice Microstruct 66:33–38CrossRefGoogle Scholar
  41. 41.
    Lee YF, Kumar R, Hunte F, Narayan J, Schwartz J (2015) Microstructure and transport properties of epitaxial topological insulator Bi2Se3 thin films grown on MgO (100), Cr2O3 (0001), and Al2O3 (0001) templates. J Appl Phys 118:125309CrossRefGoogle Scholar
  42. 42.
    Lee YF, Kumar R, Hunte F, NarayanJ Schwartz J (2015) Control of intrinsic defects and magnetotransport properties of Bi2Se3/c-sapphire epitaxial heterostructures. Acta Mater 95:57–64CrossRefGoogle Scholar
  43. 43.
    Liu M, Spanos PD, Yu S-H (2019) Synthesis of ultrathin Bi2Se3 nanosheets/graphene nanocomposite with defects/vacancies-dependent transient photocurrent performance. Nano Energy 64:103877CrossRefGoogle Scholar
  44. 44.
    Bergman L, Nemanich RJ (1995) Raman and photoluminescence analysis of stress state and impurity distribution in diamond thin films. J Appl Phys 78:6709–6719CrossRefGoogle Scholar
  45. 45.
    Soni A, Zhao YY, Yu LG, Aik MKK, Dresselhaus MS, Xiong QH (2012) Enhanced thermoelectric properties of solution grown Bi2Te3−xSex nanoplatelet composites. Nano Lett 12:1203–1209CrossRefGoogle Scholar
  46. 46.
    Yang X, Wang X, Zhang Z (2005) Synthesis and optical properties of single-crystalline bismuth selenide nanorods via a convenient route. J Cryst Growth 276:566–570CrossRefGoogle Scholar
  47. 47.
    Takahashi T, Sagawa T, Hamanaka H (1984) Photoemission (XPS and UPS) study of amorphous Bi2Se3 film. J Non-Cryst Solids 65:261–267CrossRefGoogle Scholar
  48. 48.
    Pelenovich VO, Xiao RZ, Liu Y, Liu PK, Li MK, He YB, Fu DJ (2015) Characterization of Bi2Se3: Fe epitaxial films grown by pulsed laser deposition. Thin Solid Films 577:119–123CrossRefGoogle Scholar
  49. 49.
    Zhang GH, Qin HJ, Teng J, Guo JD, Guo QL, Dai X, Fang Z, Wu KH (2009) Quintuple-layer epitaxy of thin films of topological insulator Bi2Se3. Appl Phys Lett 95:053114CrossRefGoogle Scholar
  50. 50.
    Sankapal BR, Mane RS, Lokhande CD (2000) Preparation and characterization of Bi2Se3 thin films deposited by successive ionic layer adsorption and reaction (SILAR) method. Mater Chem Phys 63:230–234CrossRefGoogle Scholar
  51. 51.
    Subramanian S, Padiyan DP (2008) Effect of structural, electrical and optical properties of electrodeposited bismuth selenide thin films in polyaniline aqueous medium. Mater Chem Phys 107:392–398CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Tianjin Key Laboratory of Photoelectric Materials and Devices, School of Materials Science and EngineeringTianjin University of TechnologyTianjinChina
  2. 2.Key Laboratory of Display Materials and Photoelectric Devices, National Demonstration Center for Experimental Function Materials EducationTianjin University of Technology, Ministry of EducationTianjinChina
  3. 3.Fujian Provincial Key Laboratory of Semiconductors and Applications, Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices, Department of PhysicsXiamen UniversityXiamenChina
  4. 4.Jiujiang Research Institute of Xiamen UniversityJiujiangChina
  5. 5.Institute of Organic and Medicinal Chemistry, Medical SchoolUniversity of PécsPécsHungary
  6. 6.János Szentágothai Research CenterUniversity of PécsPécsHungary

Personalised recommendations