Advertisement

Sintering effects on additive manufactured Ni–Mn–Ga shape memory alloys: a microstructure and thermal analysis

  • 55 Accesses

Abstract

This work investigates the effects of time dependency for isothermal sintering on additive manufactured Ni–Mn–Ga magnetic shape memory alloys. Binder jetting additive manufacturing was used to produce Ni–Mn–Ga parts from pre-alloyed powders. Additive manufacturing via the binder jetting technique produces parts with intrinsic porosities, based on the morphology of the source material. The Ni–Mn–Ga parts printed in this study using the binder jetting method possessed average densities of ~ 46% before sintering. These samples were sintered at 1353 K in increments of 10 h up to 50 h. Based on this temperature and time frame, (1) microstructural evolution, (2) crystallographic phase analysis, (3) transformation behaviors, and (4) thermal–physical properties were investigated. The additive manufactured Ni–Mn–Ga samples exhibited increases in densities, from ~ 74 to ~ 83% due to solid-state diffusion mechanisms. X-ray diffraction reveals that all of the additive manufactured samples have the 5 M martensitic phase at room temperature. Reversible martensitic transformation temperatures were recorded during heating and cooling cycles through differential scanning calorimetry, which indicate austenitic phase transformations occurring slightly above ambient temperatures. Additionally, analysis of the heating and cooling cycles prescribes that the entropy and Gibb’s energies decrease over the reversible martensitic transformations as sintering time increases. It is envisioned that this study will support a more synergistic manufacturing process between binder jetting additive manufacturing and post-heat treatment processes for Ni–Mn–Ga shape memory alloys.

This is a preview of subscription content, log in to check access.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

References

  1. 1

    Chernenko VA, Besseghini S (2008) Sens Actuators Phys 142:542–548

  2. 2

    Ullakko K, Huang JK, Kantner C, O’Handley RC, Kokorin VV (1996) Appl Phys Lett 69:1966–1968

  3. 3

    Sozinov A, Likhachev AA, Lanska N, Ullakko K (2002) Appl Phys Lett 80:1746–1748

  4. 4

    Lagoudas DC (2008) Shape memory alloys: modeling and engineering applications. Springer, Berlin

  5. 5

    Faran E, Shilo D (2016) Exp Tech 40:1005–1031

  6. 6

    Shiva S, Palani IA, Mishra SK, Paul CP, Kukreja LM (2015) Opt Laser Technol 69:44–51

  7. 7

    Krishna BV, Bose S, Bandyopadhyay A (2007) Metall Mater Trans A 38:1096–1103

  8. 8

    Xiong F, Liu Y, Pagounis E (2005) J Magn Magn Mater 285:410–416

  9. 9

    Roth S, Gaitzsch U, Pötschke M, Schultz L (2008) Adv Mater Res 52:29–34

  10. 10

    Chmielus M, Zhang XX, Witherspoon C, Dunand DC, Müllner P (2009) Nat Mater 8:863–866

  11. 11

    Caputo MP, Berkowitz AE, Armstrong A, Müllner P, Solomon CV (2018) Addit Manuf 21:579–588

  12. 12

    Caputo MP, Solomon CV (2017) Mater Lett 200:87–89

  13. 13

    Utela BR, Storti D, Anderson RL, Ganter M (2010) J Manuf Sci Eng Trans ASME 132:110081–110089

  14. 14

    Liu J, Rynerson M (2003) Method for article fabrication using carbohydrate binder, US6585930 B2

  15. 15

    Do T, Kwon P, Shin CS (2017) Int J Mach Tools Manuf 121:50–60

  16. 16

    Mostafaei A, Rodriguez De Vecchis P, Stevens EL, Chmielus M (2018) Acta Mater 154:355–364

  17. 17

    Li Y, Xu F, Hu X, Dong B, Luan Y, Xiao Y (2016) Materials 9:132

  18. 18

    Bai Y, Williams CB (2015) Rapid Prototyp J 21:177–185

  19. 19

    Witherspoon C, Zheng P, Chmielus M, Dunand DC, Müllner P (2015) Acta Mater 92:64–71

  20. 20

    Dunand DC, Müllner P (2011) Adv Mater 23:216–232

  21. 21

    Banhart J (2001) Prog Mater Sci 46:559–632

  22. 22

    Castaño FJ, Nelson-Cheeseman B, O’Handley RC, Ross CA, Redondo C, Castaño F (2003) J Appl Phys 93:8492–8494

  23. 23

    Zheng P, Kucza NJ, Patrick CL, Müllner P, Dunand DC (2015) J Alloys Compd 624:226–233

  24. 24

    Richard M, Feuchtwanger J, Schlagel D, Lograsso T, Allen SM, O’Handley RC (2006) Scr Mater 54:1797–1801

  25. 25

    Righi L, Albertini F, Calestani G, Pareti L, Paoluzi A, Ritter C, Algarabel PA, Morellon L, Ricardo Ibarra M (2006) J Solid State Chem 179:3525–3533

  26. 26

    Righi L, Albertini F, Pareti L, Paoluzi A, Calestani G (2007) Acta Mater 55:5237–5245

  27. 27

    Righi L, Albertini F, Villa E, Paoluzi A, Calestani G, Chernenko V, Besseghini S, Ritter C, Passaretti F (2008) Acta Mater 56:4529–4535

  28. 28

    Pons J, Chernenko VA, Santamarta R, Cesari E (2000) Acta Mater 48:3027–3038

  29. 29

    Jiang C, Muhammad Y, Deng L, Wu W, Xu H (2004) Acta Mater 52:2779–2785

  30. 30

    Sánchez-Alarcos V, Pérez-Landazábal JI, Recarte V, Rodríguez-Velamazán JA, Chernenko VA (2010) J Phys Condens Matter 22:166001

  31. 31

    Heczko O, Lanska N, Soderberg O, Ullakko K (2002) J Magn Magn Mater 242(Part 2):1446–1449

  32. 32

    Sofronie M, Tolea F, Kuncser V, Valeanu M (2010) J Appl Phys 107:113905

  33. 33

    Wu SK, Yang ST (2003) Mater Lett 57:4291–4296

  34. 34

    Sánchez-Alarcos V, Recarte V, Pérez-Landazábal JI, Cuello GJ (2007) Acta Mater 55:3883–3889

  35. 35

    Singh RK, Shamsuddin M, Gopalan R, Mathur RP, Chandrasekaran V (2008) Mater Sci Eng A 476:195–200

  36. 36

    Tian B, Chen F, Tong Y, Li L, Zheng Y (2012) J Mater Eng Perform 21:2530–2534

  37. 37

    Tian B, Chen F, Liu Y, Zheng YF (2008) Mater Lett 62:2851–2854

  38. 38

    Kök M, Aydogdu Y (2012) Thermochim Acta 548:51–55

  39. 39

    Jiang C, Feng G, Gong S, Xu H (2003) Mater Sci Eng A 342:231–235

  40. 40

    Ma Y, Jiang C, Li Y, Xu H, Wang C, Liu X (2007) Acta Mater 55:1533–1541

  41. 41

    Palazzo P (2012) Int J Energy Environ Eng 3:4

Download references

Acknowledgements

The authors would like to acknowledge the use of the facilities within the Center for Excellence in Materials Science and Engineering and Center for Innovation in Additive Manufacturing at Youngstown State University. MPC and DRW gratefully acknowledge the financial support provided by the Engineering Technology and Commonwealth Engineering (ETCE), Pennsylvania State University.

Author information

Correspondence to Matthew P. Caputo.

Ethics declarations

Conflict of interest

The authors hereby declare, to the best of their knowledge, that all relationships and/or interests of the manuscript do not include a conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Caputo, M.P., Waryoba, D.R. & Solomon, C.V. Sintering effects on additive manufactured Ni–Mn–Ga shape memory alloys: a microstructure and thermal analysis. J Mater Sci (2020). https://doi.org/10.1007/s10853-020-04352-9

Download citation