Journal of Materials Science

, Volume 55, Issue 11, pp 4539–4557 | Cite as

Formation mechanism and applications of cenospheres: a review

  • Aamar DanishEmail author
  • Mohammad Ali Mosaberpanah


In thermal power plants, pulverized coal combusts to give an intricate composition of anthropogenic materials such as fly ash (coal). These materials are a major threat to environmental (air and water, etc.) pollution if dispose of to landfill sites and rivers. Since the last two decades, research and efforts are going on to reduce production and derivation of potentially valuable materials from coal fly ash such as cenosphere. Cenosphere is a low density, chemically inert and spherical material filled with air/inert gas (either nitrogen or carbon dioxide). Cenosphere is considered to be the most important fraction of fly ash as it is being used in different industries due to its condescending properties such as high workability, thermal resistance, compressive strength and low conductivity, bulk density. This review discuses the extraction of cenosphere from fly ash, its characterization (physical and chemical) and applications in different industries.


Compliance with ethical standards

Conflict of interest

Authors declare no conflict of interest.


  1. 1.
    Al-Ghussain L (2019) Global warming: review on driving forces and mitigation. Environ Prog Sustain Energy 38(1):13–21. CrossRefGoogle Scholar
  2. 2.
    Liu Y, Tang H, Muhammad A, Huang G (2019) Emission mechanism and reduction countermeasures of agricultural greenhouse gases—a review. Greenh Gases Sci Technol 9(2):160–174. CrossRefGoogle Scholar
  3. 3.
    Fan J, Hong H, Jin H (2019) Life cycle global warming impact of CO2 capture by in situ gasification chemical looping combustion using ilmenite oxygen carriers. J Clean Prod. CrossRefGoogle Scholar
  4. 4.
    Raza MY, Shah MTS (2019) Analysis of coal-related energy consumption in Pakistan: an alternative energy resource to fuel economic development. Environ Dev Sustain. CrossRefGoogle Scholar
  5. 5.
    Song H, Xie W, Liu J, Cheng F, Gasem KA, Fan M (2018) Effect of surfactants on the properties of a gas-sealing coating modified with fly ash and cement. J Mater Sci 53(21):15142–15156. CrossRefGoogle Scholar
  6. 6.
    Council NR (2007) National Research Council Coal: research and development to support national energy policy. National Academies Press, Washington, DC. CrossRefGoogle Scholar
  7. 7.
    Rani R, Jain MK (2019) Hydraulic transportation of coal combustion products for mine fill. Part Sci Technol 37(1):123–129. CrossRefGoogle Scholar
  8. 8.
    Temuujin J, Surenjav E, Ruescher CH, Vahlbruch J (2019) Processing and uses of fly ash addressing radioactivity (critical review). Chemosphere 216:866–882. CrossRefGoogle Scholar
  9. 9.
    Yu J, Li X, Fleming D, Meng Z, Wang D, Tahmasebi A (2012) Analysis on characteristics of fly ash from coal fired power stations. Energy Procedia 17:3–9. CrossRefGoogle Scholar
  10. 10.
    Gollakota AR, Volli V, Shu C-M (2019) Progressive utilisation prospects of coal fly ash: a review. Sci Total Environ 672:951–989. CrossRefGoogle Scholar
  11. 11.
    Vengosh A, Cowan EA, Coyte RM, Kondash AJ, Wang Z, Brandt JE, Dwyer GS (2019) Evidence for unmonitored coal ash spills in Sutton Lake, North Carolina: implications for contamination of lake ecosystems. Sci Total Environ 686:1090–1103. CrossRefGoogle Scholar
  12. 12.
    Sahu S, Bhangare R, Ajmal P, Sharma S, Pandit G, Puranik V (2009) Characterization and quantification of persistent organic pollutants in fly ash from coal fueled thermal power stations in India. Microchem J 92(1):92–96. CrossRefGoogle Scholar
  13. 13.
    Nagarajan R, Thirumalaisamy S, Lakshumanan E (2012) Impact of leachate on groundwater pollution due to non-engineered municipal solid waste landfill sites of Erode City, Tamil Nadu, India. Iran J Environ Health Sci Eng 9(1):35. CrossRefGoogle Scholar
  14. 14.
    Ge JC, Kim JY, Yoon SK, Choi NJ (2019) Fabrication of low-cost and high-performance coal fly ash nanofibrous membranes via electrospinning for the control of harmful substances. Fuel 237:236–244. CrossRefGoogle Scholar
  15. 15.
    Pandey V, Ray M, Kumar V (2019) Assessment of water-quality parameters of groundwater contaminated by fly ash leachate near Koradi Thermal Power Plant, Nagpur. Environ Sci Pollut Res. CrossRefGoogle Scholar
  16. 16.
    Ranjbar N, Kuenzel C (2017) Cenospheres: a review. Fuel 207:1–12. CrossRefGoogle Scholar
  17. 17.
    Basu M, Pande M, Bhadoria P, Mahapatra S (2009) Potential fly-ash utilization in agriculture: a global review. Prog Nat Sci 19(10):1173–1186. CrossRefGoogle Scholar
  18. 18.
    Woszuk A, Bandura L, Franus W (2019) Fly ash as low cost and environmentally friendly filler and its effect on the properties of mix asphalt. J Clean Prod 235:493–502. CrossRefGoogle Scholar
  19. 19.
    Valeev D, Kunilova I, Alpatov A, Mikhailova A, Goldberg M, Kondratiev A (2019) Complex utilisation of ekibastuz brown coal fly ash: iron and carbon separation and aluminum extraction. J Clean Prod 218:192–201. CrossRefGoogle Scholar
  20. 20.
    Valeev D, Kunilova I, Alpatov A, Varnavskaya A, Ju D (2019) Magnetite and carbon extraction from coal fly ash using magnetic separation and flotation methods. Minerals 9(5):320. CrossRefGoogle Scholar
  21. 21.
    Skousen J, Ziemkiewicz P, Yang JE (2012) Use of coal combustion by-products in mine reclamation: review of case studies in the USA. Geosyst Eng 15(1):71–83. CrossRefGoogle Scholar
  22. 22.
    Ge J, Yoon S, Choi N (2018) Application of fly ash as an adsorbent for removal of air and water pollutants. Appl Sci 8(7):1116. CrossRefGoogle Scholar
  23. 23.
    Wang S (2008) Application of solid ash based catalysts in heterogeneous catalysis. Environ Sci Technol 42(19):7055–7063. CrossRefGoogle Scholar
  24. 24.
    Ahmaruzzaman M (2010) A review on the utilization of fly ash. Prog Energy Combust Sci 36(3):327–363. CrossRefGoogle Scholar
  25. 25.
    Blissett R, Rowson N (2012) A review of the multi-component utilisation of coal fly ash. Fuel 97:1–23. CrossRefGoogle Scholar
  26. 26.
    Putilov V, Putilova I (2015) The best available and perspective nature protection technologies in the Russian power industry. Accessed 13 June 2019
  27. 27.
    Heidrich C (2002) Ash utilization—an Australian perspective. In: International ash utilization symposium center for applied energy research, University of KentuckyGoogle Scholar
  28. 28.
    Yao Z, Ji X, Sarker P, Tang J, Ge L, Xia M, Xi Y (2015) A comprehensive review on the applications of coal fly ash. Earth Sci Rev 141:105–121. CrossRefGoogle Scholar
  29. 29.
    Hanif A, Lu Z, Li Z (2017) Utilization of fly ash cenosphere as lightweight filler in cement-based composites—a review. Constr Build Mater 144:373–384. CrossRefGoogle Scholar
  30. 30.
    Torrey S (1978) Coal ash utilization. Fly ash, bottom ash, and slag, 1st edn. Noyes Data Corporation, Park RidgeGoogle Scholar
  31. 31.
    Yoriya S, Intana T, Tepsri P (2019) Separation of cenospheres from lignite fly ash using acetone–water mixture. Appl Sci 9(18):3792. CrossRefGoogle Scholar
  32. 32.
    Senthamarai Kannan K, Andal L, Shanmugasundaram M (2016) An investigation on strength development of cement with cenosphere and silica fume as pozzolanic replacement. Adv Mater Sci Eng. CrossRefGoogle Scholar
  33. 33.
    Ngu L-n, Wu H, Zhang D-k (2007) Characterization of ash cenospheres in fly ash from Australian power stations. Energy Fuels 21(6):3437–3445. CrossRefGoogle Scholar
  34. 34.
    Fenelonov VB, Mel’gunov MS, Parmon VN (2010) The properties of cenospheres and the mechanism of their formation during high-temperature coal combustion at thermal power plans. KONA Powder Part J 28:189–208. CrossRefGoogle Scholar
  35. 35.
    Sear LK (2001) Properties and use of coal fly ash: a valuable industrial by-product, 1st edn. Thomas Telford, LondonCrossRefGoogle Scholar
  36. 36.
    Heiken G, Wohletz K (1985) Volcanic ash, 1st edn. University Presses of California and Harvard & MIT, Chicago and LondonGoogle Scholar
  37. 37.
    Gurupira T, Jones CL, Howard A, Lockert C, Wandell T, Stencel JM (2001) New products from coal combustion ash: selective extraction of particles with density. In: International ash utilization symposiumGoogle Scholar
  38. 38.
    Sideris K, Justnes H, Soutsos M, Sui T (2018) Fly ash. In: De Belie N, Soutsos M, Gruyaert E (eds) Properties of fresh and hardened concrete containing supplementary cementitious materials. Springer, Berlin, pp 55–98. CrossRefGoogle Scholar
  39. 39.
    Lauf RJ (1981) Cenospheres in fly ash and conditions favouring their formation. Fuel 60:1177–1179. CrossRefGoogle Scholar
  40. 40.
    Jiang L, Elbaz AM, Guida P, Al-Noman SM, AlGhamdi IA, Saxena S, Roberts WL (2019) cenosphere formation during single-droplet combustion of heavy fuel oil. Energy Fuels 33(2):1570–1581. CrossRefGoogle Scholar
  41. 41.
    Chock DP, Winkler SL, Chen C (2000) A study of the association between daily mortality and ambient air pollutant concentrations in Pittsburgh, Pennsylvania. J Air Waste Manag Assoc 50(8):1481–1500. CrossRefGoogle Scholar
  42. 42.
    Anderson H, Bremner S, Atkinson R, Harrison R, Walters S (2001) Particulate matter and daily mortality and hospital admissions in the west midlands conurbation of the United Kingdom: associations with fine and coarse particles, black smoke and sulphate. Occup Environ Med 58(8):504–510. CrossRefGoogle Scholar
  43. 43.
    Drozhzhin VS, Pikulin IV, Kuvaev MD, Redyushev S, Shpirt MY (2005) Technical monitoring of microspheres from fly ashes of electric power stations in the Russian Federation. In: Proceedings of “world of coal ash” conference, Lexington, Kentucky, USA, pp 11–14Google Scholar
  44. 44.
    Mondal D, Das S, Ramakrishnan N, Bhasker KU (2009) Cenosphere filled aluminum syntactic foam made through stir-casting technique. Compos Part A Appl Sci Manuf 40(3):279–288. CrossRefGoogle Scholar
  45. 45.
    Wang M-R, Jia D-C, He P-G, Zhou Y (2011) Microstructural and mechanical characterization of fly ash cenosphere/metakaolin-based geopolymeric composites. Ceram Int 37(5):1661–1666. CrossRefGoogle Scholar
  46. 46.
    Ghosal S, Self SA (1995) Particle size-density relation and cenosphere content of coal fly ash. Fuel 74(4):522–529. CrossRefGoogle Scholar
  47. 47.
    Goodarzi F, Hower JC (2008) Classification of carbon in Canadian fly ashes and their implications in the capture of mercury. Fuel 87(10–11):1949–1957. CrossRefGoogle Scholar
  48. 48.
    Anshits N, Mikhailova O, Salanov A, Anshits A (2010) Chemical composition and structure of the shell of fly ash non-perforated cenospheres produced from the combustion of the Kuznetsk coal (Russia). Fuel 89(8):1849–1862. CrossRefGoogle Scholar
  49. 49.
    Wang H, Zheng K, Zhang X, Wang Y, Xiao C, Chen L, Tian X (2018) Hollow microsphere-infused porous poly (vinylidene fluoride)/multiwall carbon nanotube composites with excellent electromagnetic shielding and low thermal transport. J Mater Sci 53(8):6042–6052. CrossRefGoogle Scholar
  50. 50.
    Vassilev SV, Menendez R, Diaz-Somoano M, Martinez-Tarazona MR (2004) Phase-mineral and chemical composition of coal fly ashes as a basis for their multicomponent utilization. 2. Characterization of ceramic cenosphere and salt concentrates. Fuel 83(4–5):585–603. CrossRefGoogle Scholar
  51. 51.
    Huang Z-Q, Yu S-R, Li M-Q (2010) Microstructures and compressive properties of AZ91D/fly-ash cenospheres composites. Trans Nonferr Met Soc China 20:s458–s462. CrossRefGoogle Scholar
  52. 52.
    Liu F, Wang J, Qian X (2017) Integrating phase change materials into concrete through microencapsulation using cenospheres. Cem Concr Compos 80:317–325. CrossRefGoogle Scholar
  53. 53.
    Fomenko EV, Anshits NN, Pankova MV, Solovyov LA, Anshits AG (2011) Fly ash cenospheres: composition, morphology, structure, and helium permeability. In: World coal ash conference—May, 2011, pp 9–12Google Scholar
  54. 54.
    Bajukov O, Anshits N, Petrov M, Balaev A, Anshits A (2009) Composition of ferrospinel phase and magnetic properties of microspheres and cenospheres from fly ashes. Mater Chem Phys 114(1):495–503. CrossRefGoogle Scholar
  55. 55.
    Barbare N, Shukla A, Bose A (2003) Uptake and loss of water in a cenosphere—concrete composite material. Cem Concr Res 33(10):1681–1686. CrossRefGoogle Scholar
  56. 56.
    Żyrkowski M, Neto RC, Santos LF, Witkowski K (2016) Characterization of fly-ash cenospheres from coal-fired power plant unit. Fuel 174:49–53. CrossRefGoogle Scholar
  57. 57.
    Bryers RW (1996) Fireside slagging, fouling, and high-temperature corrosion of heat-transfer surface due to impurities in steam-raising fuels. Prog Energy Combust Sci 22(1):29–120. CrossRefGoogle Scholar
  58. 58.
    Majkrzak G, Watson J, Bryant M, Clayton K (2007) Effect of cenospheres on fly ash brick properties. In: Proceedings of world coal ash, Covington, Kentuck, USAGoogle Scholar
  59. 59.
    Tiwari V, Shukla A, Bose A (2004) Acoustic properties of cenosphere reinforced cement and asphalt concrete. Appl Acoust 65(3):263–275. CrossRefGoogle Scholar
  60. 60.
    Noor-ul-Amin (2014) A multi-directional utilization of different ashes. RSC Adv 4(107):62769–62788. CrossRefGoogle Scholar
  61. 61.
    Kolay P, Dp Singh (2001) Physical, chemical, mineralogical, and thermal properties of cenospheres from an ash lagoon. Cem Concr Res 31(4):539–542. CrossRefGoogle Scholar
  62. 62.
    Fomenko EV, Anshits NN, Vasilieva NG, Mikhaylova OA, Rogovenko ES, Zhizhaev AM, Anshits AG (2015) Characterization of fly ash cenospheres produced from the combustion of Ekibastuz coal. Energy Fuels 29(8):5390–5403CrossRefGoogle Scholar
  63. 63.
    Fomenko EV, Anshits NN, Solovyov LA, Mikhaylova OA, Anshits AG (2013) Composition and morphology of fly ash cenospheres produced from the combustion of Kuznetsk coal. Energy Fuels 27(9):5440–5448. CrossRefGoogle Scholar
  64. 64.
    Zhang X, Huo W, Lu Y, Gan K, Yan S, Liu J, Yang J (2019) Porous Si3N4-based ceramics with uniform pore structure originated from single-shell hollow microspheres. J Mater Sci 54(6):4484–4494. CrossRefGoogle Scholar
  65. 65.
    Kruger RA (1996) The use of cenospheres in refractories. Energeia 7(4):1–5Google Scholar
  66. 66.
    Liu F, Wang J, Qian X, Hollingsworth J (2017) Internal curing of high performance concrete using cenospheres. Cem Concr Res 95:39–46. CrossRefGoogle Scholar
  67. 67.
    Blanco F, García P, Mateos P, Ayala J (2000) Characteristics and properties of lightweight concrete manufactured with cenospheres. Cem Concr Res 30(11):1715–1722. CrossRefGoogle Scholar
  68. 68.
    Hanif A, Diao S, Lu Z, Fan T, Li Z (2016) Green lightweight cementitious composite incorporating aerogels and fly ash cenospheres—mechanical and thermal insulating properties. Constr Build Mater 116:422–430. CrossRefGoogle Scholar
  69. 69.
    de Souza FB, Montedo ORK, Grassi RL, Antunes EGP (2019) Lightweight high-strength concrete with the use of waste cenosphere as fine aggregate. Matéria (Rio de Janeiro). CrossRefGoogle Scholar
  70. 70.
    Wang J-Y, Zhang M-H, Li W, Chia K-S, Liew RJ (2012) Stability of cenospheres in lightweight cement composites in terms of alkali–silica reaction. Cem Concr Res 42(5):721–727. CrossRefGoogle Scholar
  71. 71.
    Hanif A, Lu Z, Diao S, Zeng X, Li Z (2017) Properties investigation of fiber reinforced cement-based composites incorporating cenosphere fillers. Constr Build Mater 140:139–149. CrossRefGoogle Scholar
  72. 72.
    Hanif A, Lu Z, Sun M, Parthasarathy P, Li Z (2017) Green lightweight ferrocement incorporating fly ash cenosphere based fibrous mortar matrix. J Clean Prod 159:326–335. CrossRefGoogle Scholar
  73. 73.
    Meng X-f, Li D-h, Shen X-q, Liu W (2010) Preparation and magnetic properties of nano-Ni coated cenosphere composites. Appl Surf Sci 256(12):3753–3756. CrossRefGoogle Scholar
  74. 74.
    Hanif A, Parthasarathy P, Lu Z, Sun M, Li Z (2017) Fiber-reinforced cementitious composites incorporating glass cenospheres—mechanical properties and microstructure. Constr Build Mater 154:529–538. CrossRefGoogle Scholar
  75. 75.
    Hanif A, Usman M, Lu Z, Cheng Y, Li Z (2018) Flexural fatigue behavior of thin laminated cementitious composites incorporating cenosphere fillers. Mater Des 140:267–277. CrossRefGoogle Scholar
  76. 76.
    Satpathy H, Patel S, Nayak A (2019) Development of sustainable lightweight concrete using fly ash cenosphere and sintered fly ash aggregate. Constr Build Mater 202:636–655. CrossRefGoogle Scholar
  77. 77.
    Zheng Z, Su Q, Zhang Q, Ye H, Wang Z (2018) Onion-like carbon microspheres as long-life anodes materials for Na-ion batteries. J Mater Sci 53(17):12421–12431. CrossRefGoogle Scholar
  78. 78.
    Qi Y-C, Shen J, Jiang Q-Y, Jin B, Chen J-W, Zhang X, Su J-L (2016) Hierarchical porous hydroxyapatite microspheres: synthesis and application in water treatment. J Mater Sci 51(5):2598–2607. CrossRefGoogle Scholar
  79. 79.
    Hajimohammadi A, Ngo T, Provis JL, Kim T, Vongsvivut J (2019) High strength/density ratio in a syntactic foam made from one-part mix geopolymer and cenospheres. Compos Part B Eng 173:106908. CrossRefGoogle Scholar
  80. 80.
    Baduge SK, Mendis P, San Nicolas R, Nguyen K, Hajimohammadi A (2019) Performance of lightweight hemp concrete with alkali-activated cenosphere binders exposed to elevated temperature. Constr Build Mater 224:158–172. CrossRefGoogle Scholar
  81. 81.
    Fisher GL, Chang D, Brummer M (1976) Fly ash collected from electrostatic precipitators: microcrystalline structures and the mystery of the spheres. Science 192(4239):553–555. CrossRefGoogle Scholar
  82. 82.
    Raask E (1985) Mineral impurities in coal combustion: behavior, problems, and remedial measures, 1st edn. Taylor & Francis, LondonGoogle Scholar
  83. 83.
    Oh MS, Peters WA, Howard JB (1989) An experimental and modeling study of softening coal pyrolysis. AIChE J 35(5):775–792. CrossRefGoogle Scholar
  84. 84.
    Matsuoka K, Akiho H, Xu W-c, Gupta R, Wall TF, Tomita A (2005) The physical character of coal char formed during rapid pyrolysis at high pressure. Fuel 84(1):63–69. CrossRefGoogle Scholar
  85. 85.
    Seames WS (2003) An initial study of the fine fragmentation fly ash particle mode generated during pulverized coal combustion. Fuel Process Technol 81(2):109–125. CrossRefGoogle Scholar
  86. 86.
    Goodarzi F, Sanei H (2009) Plerosphere and its role in reduction of emitted fine fly ash particles from pulverized coal-fired power plants. Fuel 88(2):382–386. CrossRefGoogle Scholar
  87. 87.
    Sarkar A, Rano R, Mishra K, Mazumder A (2007) Characterization of cenospheres collected from ash-pond of a super thermal power plant. Energy Sources Part A Recov Util Environ Eff 30(3):271–283. CrossRefGoogle Scholar
  88. 88.
    Frandsen FJ (2009) Ash research from Palm Coast, Florida to Banff, Canada: entry of biomass in modern power boilers. Energy Fuels 23(7):3347–3378. CrossRefGoogle Scholar
  89. 89.
    Shpirt MY (1986) Waste-free technology. Utilization of wastes of mining and processing of solid combustible minerals, 1st edn. Nedra, MoscowGoogle Scholar
  90. 90.
    Drozhzhin V, Shpirt MY, Danilin L, Kuvaev M, Pikulin I, Potemkin G, Redyushev S (2008) Formation processes and main properties of hollow aluminosilicate microspheres in fly ash from thermal power stations. Solid Fuel Chem 42(2):107–119. CrossRefGoogle Scholar
  91. 91.
    Soh WM, Tan J, Heng JY, Cheeseman C (2017) Production of cenospheres from coal fly ash through vertical thermal flame (VTF) process. In: Materials science forum, vol 880. Trans Tech Publications, pp 7–10. CrossRefGoogle Scholar
  92. 92.
    Vassilev SV, Vassileva CG (1996) Mineralogy of combustion wastes from coal-fired power stations. Fuel Process Technol 47(3):261–280. CrossRefGoogle Scholar
  93. 93.
    Bibby DM (1977) Composition and variation of pulverized fuel ash obtained from the combustion of sub-bituminous coals, New Zealand. Fuel 56(4):427–431. CrossRefGoogle Scholar
  94. 94.
    Srinivasachar S, Helble JJ, Boni AA, Shah N, Huffman GP, Huggins FE (1990) Mineral behavior during coal combustion. 2. Illite transformations. Prog Energy Combust Sci 16(4):293–302. CrossRefGoogle Scholar
  95. 95.
    Hubbard F, McGill R, Dhir R, Ellis M (1984) Clay and pyrite transformations during ignition of pulverised coal. Mineral Mag 48(347):251–256. CrossRefGoogle Scholar
  96. 96.
    Spears D (2000) Role of clay minerals in UK coal combustion. Appl Clay Sci 16(1–2):87–95. CrossRefGoogle Scholar
  97. 97.
    Raask E (1968) Cenospheres in pulverized-fuel ash. J Inst Fuel 41(332):339Google Scholar
  98. 98.
    Harry M, Eenkhoorn S, Hamburg G (1996) A fundamental investigation of the flame kinetics of coal pyrite. Fuel 75(8):945–951. CrossRefGoogle Scholar
  99. 99.
    Sokol E, Maksimova N, Volkova N, Nigmatulina E, Frenkel A (2000) Hollow silicate microspheres from fly ashes of the Chelyabinsk brown coals (South Urals, Russia). Fuel Process Technol 67(1):35–52. CrossRefGoogle Scholar
  100. 100.
    Newall H, Sinnatt F (1924) The carbonization of coal in the form of fine particles. I. The production of cenospheres. Fuel 3(4):424Google Scholar
  101. 101.
    Joseph K, Francis F, Chacko J, Das P, Hebbar G (2013) Fly ash cenosphere waste formation in coal fired power plants and its application as a structural material—a review. Int J Eng Res Technol (IJERT) 2(8):1236–1260Google Scholar
  102. 102.
    Li J, Agarwal A, Iveson S, Kiani A, Dickinson J, Zhou J, Galvin K (2014) Recovery and concentration of buoyant cenospheres using an Inverted Reflux Classifier. Fuel Process Technol 123:127–139. CrossRefGoogle Scholar
  103. 103.
    Petrus H, Hirajima T, Oosako Y, Nonaka M, Sasaki K, Ando T (2011) Performance of dry-separation processes in the recovery of cenospheres from fly ash and their implementation in a recovery unit. Int J Miner Process 98(1–2):15–23. CrossRefGoogle Scholar
  104. 104.
    Kolay PK, Bhusal S (2014) Recovery of hollow spherical particles with two different densities from coal fly ash and their characterization. Fuel 117:118–124. CrossRefGoogle Scholar
  105. 105.
    Karr C (2013) Analytical methods for coal and coal products, vol 2, 1st edn. Academic Press, CambridgeGoogle Scholar
  106. 106.
    Shapiro M, Galperin V (2005) Air classification of solid particles: a review. Chem Eng Process Process Intensif 44(2):279–285. CrossRefGoogle Scholar
  107. 107.
    Hirajima T, Petrus H, Oosako Y, Nonaka M, Sasaki K, Ando T (2010) Recovery of cenospheres from coal fly ash using a dry separation process: separation estimation and potential application. Int J Miner Process 95(1–4):18–24. CrossRefGoogle Scholar
  108. 108.
    Research TM (2019) Cenospheres market—global industry analysis, size, share, growth, trends and forecast 2017–2025. Accessed 13 July 2019
  109. 109.
    International S (2018) Global market trends and forecasts up to 2025. Accessed 23 July 2019
  110. 110.
    Lilkov V, Djabarov N, Bechev G, Kolev K (1999) Properties and hydration products of lightweight and expansive cements Part I: physical and mechanical properties. Cem Concr Res 29(10):1635–1640. CrossRefGoogle Scholar
  111. 111.
    Lilkov V, Djabarov N, Bechev G, Petrov O (1999) Properties and hydration products of lightweight and expansive cements Part II: hydration products. Cem Concr Res 29(10):1641–1646. CrossRefGoogle Scholar
  112. 112.
    Biederman Jr EW (1972) Lightweight cements for oil wells. Google PatentsGoogle Scholar
  113. 113.
    Li Z, Xu Y, Liu H, Zhang J, Wei J, Yu Q (2019) Effect of the MgO/silica fume ratio on the reaction process of the MgO–SiO2–H2O system. Materials 12(1):80. CrossRefGoogle Scholar
  114. 114.
    Toutanji HA, El-Korchi T (1995) The influence of silica fume on the compressive strength of cement paste and mortar. Cem Concr Res 25(7):1591–1602. CrossRefGoogle Scholar
  115. 115.
    Łukowski P, Salih A (2015) Durability of mortars containing ground granulated blast-furnace slag in acid and sulphate environment. Procedia Eng 108:47–54. CrossRefGoogle Scholar
  116. 116.
    Liu Z, Zhao K, Tang Y, Hu C (2019) Preparation of a cenosphere curing agent and its application to foam concrete. Adv Mater Sci Eng. CrossRefGoogle Scholar
  117. 117.
    Krafcik M, Macke N, Erk K (2017) Improved concrete materials with hydrogel-based internal curing agents. Gels 3(4):46. CrossRefGoogle Scholar
  118. 118.
    Sahu P, Mahanwar P, Bambole V (2013) Effect of hollow glass microspheres and cenospheres on insulation properties of coatings. Pigment Resin Technol 42(4):223–230. CrossRefGoogle Scholar
  119. 119.
    Rohatgi P, Guo R, Iksan H, Borchelt E, Asthana R (1998) Pressure infiltration technique for synthesis of aluminum–fly ash particulate composite. Mater Sci Eng A 244(1):22–30. CrossRefGoogle Scholar
  120. 120.
    Souvignier C, Sercombe T, Huo S, Calvert P, Schaffer G (2001) Freeform fabrication of aluminum metal-matrix composites. J Mater Res 16(9):2613–2618. CrossRefGoogle Scholar
  121. 121.
    Shukla S, Seal S, Akesson J, Oder R, Carter R, Rahman Z (2001) Study of mechanism of electroless copper coating of fly-ash cenosphere particles. Appl Surf Sci 181(1–2):35–50. CrossRefGoogle Scholar
  122. 122.
    Cardoso R, Shukla A, Bose A (2002) Effect of particle size and surface treatment on constitutive properties of polyester-cenosphere composites. J Mater Sci 37(3):603–613. CrossRefGoogle Scholar
  123. 123.
    Kruger R, Toit P (1991) Recovery and characterization of cenospheres from South African power plants. In: Proceedings of the ninth international ash use symposium, ACAA, EPRI Report No. GS-7162, pp 76–71Google Scholar
  124. 124.
    Shao Y, Jia D, Zhou Y, Liu B (2008) Novel method for fabrication of silicon nitride/silicon oxynitride composite ceramic foams using fly ash cenosphere as a pore-forming agent. J Am Ceram Soc 91(11):3781–3785. CrossRefGoogle Scholar
  125. 125.
    Russak MA (1976) Development and characterization of a closed pore insulation material. Am Ceram Soc Bull (United States) 55(5):504–507Google Scholar
  126. 126.
    Gupta N, Woldesenbet E, Mensah P (2004) Compression properties of syntactic foams: effect of cenosphere radius ratio and specimen aspect ratio. Compos Part A Appl Sci Manuf 35(1):103–111. CrossRefGoogle Scholar
  127. 127.
    Hiel C, Dittman D, Ishai O (1993) Composite sandwich construction with syntactic foam core—a practical assessment of post-impact damage and residual strength. Composites 24:447–450. CrossRefGoogle Scholar
  128. 128.
    Johnson A, Mukherjee K, Schlosser S, Raask E (1970) The behaviour of a cenosphere-resin composite under hydrostatic pressure. Ocean Eng 2(1):45–48. CrossRefGoogle Scholar
  129. 129.
    Dou Z, Jiang L, Wu G, Zhang Q, Xiu Z, Chen G (2007) High strain rate compression of cenosphere-pure aluminum syntactic foams. Scr Mater 57(10):945–948. CrossRefGoogle Scholar
  130. 130.
    Wang L, Gao J, An Z, Zhao X, Yao H, Zhang M, Tian Q, Zhai X, Liu Y (2019) Polymer microsphere for water-soluble drug delivery via carbon dot-stabilizing W/O emulsion. J Mater Sci 54(6):5160–5175. CrossRefGoogle Scholar
  131. 131.
    Ploux L, Mateescu M, Guichaoua L, Valentin J, Böhmler J, Anselme K, Champion E, Pécout N, Chotard-Ghodsnia R, Viana M (2016) New colloidal fabrication of bioceramics with controlled porosity for delivery of antibiotics. J Mater Sci 51(19):8861–8879. CrossRefGoogle Scholar
  132. 132.
    King J, Quinn R, Glenn DM, Janssen J, Tong D, Liaw W, Morris DL (2008) Radioembolization with selective internal radiation microspheres for neuroendocrine liver metastases. Cancer 113(5):921–929. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Civil Engineering DepartmentCyprus International UniversityNicosiaTurkey

Personalised recommendations