Journal of Materials Science

, Volume 55, Issue 10, pp 4345–4357 | Cite as

Impact of electron transport layer material on the performance of CH3NH3PbBr3 perovskite-based photodetectors

  • Jyoti Chaudhary
  • Saral K. Gupta
  • Ajay Singh Verma
  • Chandra Mohan Singh NegiEmail author
Electronic materials


In the present article, the electron transport materials titanium oxide (TiO2), bathocuproine (BCP) and phenyl-C61-butyric acid methyl ester (PCBM) were synthesized and investigated for the application in methylammonium lead bromide (CH3NH3PbBr3) perovskite photodetectors. Results show that device based on TiO2 electron transport layer (ETL) shows higher photocurrent, responsivity and detectivity as compared to the devices based on BCP and PCBM ETL. However, ideality factor, charge carrier mobility, trap width and trap density were found to be comparable for the devices composed of BCP ETL and TiO2 ETL. The TiO2 ETL might help in the passivation of interface traps, form good quality intimate interfaces and offers more appropriate energy levels for effective blocking of holes and efficient extraction of electrons, resulting in the improved device performance. Through impedance spectroscopy analysis, the superior performance of the device with TiO2 ETL can be attributed to the better contact selectivity and high recombination resistance.



The work was supported by financial assistance from Department of Science & Technology, India, under CURIE program (Grant No. SR/CURIE-Phase-III/01/2015(G)) and MHRD FAST Programme (Grant No. 5-5/2014-TS.VII), Govt. of India. Author Dr. Ajay Singh Verma is thankful to UGC-DAE Consortium of Scientific Research, India, for supporting this research under the scheme of UGC-CSR (Letter No. CSR/IC/BL-88/CRS-205/909).


  1. 1.
    Liu J, Wang G, Luo K, He X, Ye Q, Liao C, Mei J (2017) Understanding the role of the electron-transport layer in highly efficient planar perovskite solar cells. Chem Phys Chem 18(6):617–625Google Scholar
  2. 2.
    Wang W, Xu H, Cai J, Zhu J, Ni C, Hong F, Wang L (2016) Visible blind ultraviolet photodetectors based on CH3NH3PbCl3 thin films. Opt Express 24(8):8411–8419Google Scholar
  3. 3.
    Kuang C, Tang G, Jiu T, Yang H, Liu H, Li B, Fang J (2015) Highly efficient electron transport obtained by doping PCBM with graphdiyne in planar-heterojunction perovskite solar cells. Nano Lett 15(4):2756–2762Google Scholar
  4. 4.
    Upadhyaya A, Negi CMS, Yadav A, Gupta SK, Verma AS (2018) IV and impedance characterization of a solution processed perovskite based heterojunction photodetector. Superlattices Microstruct 122:410–418Google Scholar
  5. 5.
    Ding M, Sun L, Chen X et al (2019) Air-processed, large grain perovskite films with low trap density from perovskite crystal engineering for high-performance perovskite solar cells with improved ambient stability. J Mater Sci 54:12000–12011. CrossRefGoogle Scholar
  6. 6.
    Saliba M, Matsui T, Domanski K, Seo JY, Ummadisingu A, Zakeeruddin SM, Grätzel M (2016) Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science 354(6309):206–209Google Scholar
  7. 7.
    Tu Y, Wu J, Lan Z, He X, Dong J, Jia J, Huang Y (2017) Modulated CH3NH3PbI3−xBrx film for efficient perovskite solar cells exceeding 18%. Sci Rep 7:44603Google Scholar
  8. 8.
    Courtier NE, Cave JM, Foster JM, Walker AB, Richardson G (2019) How transport layer properties affect perovskite solar cell performance: insights from a coupled charge transport/ion migration model. Energy Environ Sci 12(1):396–409Google Scholar
  9. 9.
    Salado M, Calió L, Contreras-Bernal L, Idígoras J, Anta J, Ahmad S, Kazim S (2018) Understanding the influence of interface morphology on the performance of perovskite solar cells. Materials 11(7):1073Google Scholar
  10. 10.
    Jeon NJ, Na H, Jung EH, Yang T, Lee YG, Kim G, Shin H, Seok S, Il Lee J, Seo J (2018) A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells. Nat Energy. CrossRefGoogle Scholar
  11. 11.
    Wang H, Kim DH (2017) Perovskite-based photodetectors: materials and devices. Chem Soc Rev 46:5204–5236Google Scholar
  12. 12.
    Yi X, Wang Y, Chen N, Huang Z, Ren Z, Li H, Lin T, Li C, Wang J (2018) A broad-spectral-response perovskite photodetector with a high on/off and high detectivity. Mater Chem Front 2:1847–1852Google Scholar
  13. 13.
    Li Z, Li J, Ding D, Yao H, Liu L, Gong X, Tian B, Li H, Su C, Shi S (2018) Direct observation of perovskite photodetector performance enhancement by atomically thin interface engineering. ACS Appl Mater Interfaces 10:36493–36504Google Scholar
  14. 14.
    Chu Y, Chen Y, Zhou J, Zhou B, Huang J (2019) Efficient and stable perovskite photodetectors based on thiocyanate-assisted film formation. ACS Appl Mater Interfaces 11:14510–14514Google Scholar
  15. 15.
    Gegevičius R, Franckevičius M, Pakštas V, Augulis R, Gulbinas V (2018) High-speed, sensitive planar perovskite photodetector based on interdigitated pt and au electrodes. Phys Status Solidi A 215:1700822. CrossRefGoogle Scholar
  16. 16.
    Xue M, Zhou H, Xu Y, Mei J, Yang L, Ye C, Zhang J, Wang H (2017) High-performance ultraviolet–visible tunable perovskite photodetector based on solar cell structure. Sci China Mater 60(5):407–414Google Scholar
  17. 17.
    Yang B, Zhang F, Chen J, Yang S, Xia X, Pullerits T, Deng W, Han K (2017) Ultrasensitive and fast all-inorganic perovskite-based photodetector via fast carrier diffusion. Adv Mater 29:1703758. CrossRefGoogle Scholar
  18. 18.
    Oku T, Ueoka N, Suzuki K, Suzuki A, Yamada M, Sakamoto H, Miyauchi S (2017) Fabrication and characterization of perovskite photovoltaic devices with TiO2 nanoparticles layers. AIP Conf Proc 1807:020014Google Scholar
  19. 19.
    Tirado J, Ramirez D, Betancur R, Jaramillo F (2018) Low-cost semi-transparent copper sulfide electrode for indium-tin-oxide-free perovskite solar cells. Thin Solid Films 662:90–96Google Scholar
  20. 20.
    Hailegnaw B, Poscher V, Ulbricht C, Seelajaroen H, Teasdale I, Salinas Y, Sariciftci NS, Scharber MC (2019) Improving the performance of perovskite solar cells using a polyphosphazene interfacing layer. Status Solidi A Phys CrossRefGoogle Scholar
  21. 21.
    Niu Q, Deng Y, Cui D et al (2019) Enhancing the performance of perovskite solar cells via interface modification. J Mater Sci 54:14134–14142. CrossRefGoogle Scholar
  22. 22.
    Sarritzu V, Sestu N, Marongiu D, Chang X, Masi S, Rizzo A, Colella S, Quochi F, Saba M, Mura M, Bongiovanni G (2017) Optical determination of Shockley–Read–Hall and interface recombination currents in hybrid perovskites. Sci Rep 7:44629Google Scholar
  23. 23.
    Ecker BR, Wang C, Wei H, Yuan Y, Huang J, Gao Y (2018) Intrinsic behavior of CH3NH3PbBr3 single crystals under light illumination. Adv Mater Interfaces 5(23):1801206Google Scholar
  24. 24.
    Alias MS, Dursun I, Saidaminov MI, Diallo EM, Mishra P, Ng TK, Bakr KM, Ooi BS (2016) Optical constants of CH3NH3PbBr3 perovskite thin films measured by spectroscopic ellipsometry. Opt Express 24(15):16586–16594Google Scholar
  25. 25.
    Khan A, Yu Z, Khan U, Dong L (2018) Solution processed trilayer structure for high-performance perovskite photodetector. Nanoscale Res Lett 13:399Google Scholar
  26. 26.
    Zheng X, Chen B, Yang M, Wu C, Orler B, Moore R, Zhu K, Priya S (2016) The controlling mechanism for potential loss in CH3NH3PbBr3 hybrid solar cells. ACS Energy Lett 1:424–430Google Scholar
  27. 27.
    Mali S, Su C, Hong C (2015) Highly stable and efficient solid-state solar cells based on methylammonium lead bromide (CH3NH3PbBr3) perovskite quantum dot. NPG Asia Mater 7:e208Google Scholar
  28. 28.
    Dias S, Kumawat K, Krupanidhi SB (2019) CH3NH3PbBr3 quantum dots for visible wavelength photodetector applications. J Mater Sci: Mater Electron 30:3061–3068Google Scholar
  29. 29.
    Yang B, Chen J, Shi Q, Wang Z, Gerhard M, Dobrovolsky A, Scheblykin IG, Karki KJ, Han K, Pullerits T (2018) High resolution mapping of two-photon excited photocurrent in perovskite microplate photodetector. J Phys Chem Lett 9(17):5017–5022Google Scholar
  30. 30.
    Qian L, Sun Y, Wu M, Li C, Xie D, Shi G (2018) A lead-free two-dimensional perovskite for a high-performance flexible photoconductor and a light-stimulated synaptic device. Nanoscale 10:6837–6843Google Scholar
  31. 31.
    Yang B, Li Y-J, Tang Y-X, Mao X, Luo C, Wang M-S, Deng W-Q, Han K-L (2018) Constructing sensitive and fast lead-free single-crystalline perovskite photodetectors. J Phys Chem Lett 9(11):3087–3092Google Scholar
  32. 32.
    Alias MS, Dursun I, Saidaminov Makhsud I, Diallo EM, Mishra P, Ng TK, Bakr OM, Ooi BS (2016) Optical constants of CH3NH3PbBr3 perovskite thin films measured by spectroscopic ellipsometry. Opt Express 24:16586–16594Google Scholar
  33. 33.
    Liu Y, Ji S, Li S, He W, Wang K, Hu H, Ye C (2015) Study on hole-transport-material-free planar TiO2/CH3NH3PbI3 heterojunction solar cells: the simplest configuration of a working perovskite solar cell. J Mater Chem A 3(28):14902–14909Google Scholar
  34. 34.
    Li Y, Ding B, Chu QQ, Yang GJ, Wang M, Li CX, Li CJ (2017) Ultra-high open-circuit voltage of perovskite solar cells induced by nucleation thermodynamics on rough substrates. Sci Rep 7:46141Google Scholar
  35. 35.
    Safdar A, Wang Y, Krauss TF (2018) Random lasing in uniform perovskite thin films. Opt Express 26(2):A75–A84Google Scholar
  36. 36.
    Neukom M, Züfle S, Jenatsch S, Ruhstaller B (2018) Opto-electronic characterization of third-generation solar cells. Sci Technol Adv Mater 19(1):291–316Google Scholar
  37. 37.
    Li L, Zhang S, Yang Z, Berthold EES, Chen W (2018) Recent advances of flexible perovskite solar cells. J Energy Chem 27(3):673–689Google Scholar
  38. 38.
    Pockett A, Eperon GE, Peltola T, Snaith HJ, Walker A, Peter LM, Cameron PJ (2015) Characterization of planar lead halide perovskite solar cells by impedance spectroscopy, open-circuit photovoltage decay, and intensity-modulated photovoltage/photocurrent spectroscopy. J Phys Chem C 119(7):3456–3465Google Scholar
  39. 39.
    Chen LC, Lee KL, Wu WT, Hsu CF, Tseng ZL, Sun XH, Kao YT (2018) Effect of different CH3NH3PbI3 morphologies on photovoltaic properties of perovskite solar cells. Nanoscale Res Lett 13(1):140Google Scholar
  40. 40.
    Brütting W, Berleb S, Mückl AG (2001) Device physics of organic light-emitting diodes based on molecular materials. Org Electron 2(1):1–36Google Scholar
  41. 41.
    Rathi S, Chauhan G, Gupta SK, Srivastava R, Singh A (2017) Analysis of blockade in charge transport across polymeric heterojunctions as a function of thermal annealing: a different perspective. J Electron Mater 46(2):1235–1247Google Scholar
  42. 42.
    Jain SC, Kapoor AK, Geens W, Poortmans J, Mertens R, Willander M (2002) Trap filled limit of conducting organic materials. J Appl Phys 92(7):3752–3754Google Scholar
  43. 43.
    Luan J, Xu J, Chen J, Shi X, Zhang B, Dai S, Yao J (2018) Efficient planar CH3NH3PbBr3 perovskite solar cells prepared at room temperature with ionic-liquids/fullerene as an electron transport bilayer. J Solid State Chem 270:436–442Google Scholar
  44. 44.
    Pospisil J, Zmeskal O, Nespurek S, Krajcovic J, Weiter M, Kovalenko A (2019) Density of bulk trap states of hybrid lead halide perovskite single crystals: temperature modulated space-charge-limited-currents. Sci Rep 9(1):3332Google Scholar
  45. 45.
    Upadhyaya A, Negi CMS, Yadav A, Gupta SK, Verma AS (2018) Synthesis and characterization of methylammonium lead iodide perovskite and its application in planar hetero-junction devices. Semicond Sci Technol 33(6):065012Google Scholar
  46. 46.
    Wang H, Kim DH (2017) Perovskite-based photodetectors: materials and devices. Chem Soc Rev 46(17):5204–5236Google Scholar
  47. 47.
    Aharon S, Cohen BE, Etgar L (2014) Hybrid lead halide iodide and lead halide bromide in efficient hole conductor free perovskite solar cell. J Phys Chem C 118(30):17160–17165Google Scholar
  48. 48.
    Cao M, Tian J, Cai Z, Peng L, Yang L, Wei D (2016) Perovskite heterojunction based on CH3NH3PbBr3 single crystal for high sensitive self-powered photodetector. Appl Phys Lett 109:233303Google Scholar
  49. 49.
    Sulaman M, Yang S, Jiang Y, Tang Y, Zou B (2017) Enhanced performance of solution-processed -broadband photodiodes by epitaxially blending MAPbBr3 quantum dots and ternary PbSxSe1−x quantum dots as the active layer. Nanotechnology 28:505501Google Scholar
  50. 50.
    Wangyang P, Gong C, Rao G, Hu K, Wang X, Yan C, Dai L, Wu C, Xiong J (2018) Recent advances in halide perovskite photodetectors based on different dimensional materials. Adv Opt Mater 6(11):1701302Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsBanasthali VidyapithBanasthaliIndia
  2. 2.Department of ElectronicsBanasthali VidyapithBanasthaliIndia

Personalised recommendations