Journal of Materials Science

, Volume 55, Issue 11, pp 4671–4684 | Cite as

Can supercritical carbon dioxide be suitable for the green pretreatment of plant fibres dedicated to composite applications?

  • Camille FrançoisEmail author
  • Vincent PlacetEmail author
  • Johnny Beaugrand
  • Sylvie Pourchet
  • Gilles Boni
  • Dominique Champion
  • Stéphane Fontaine
  • Laurent Plasseraud
Composites & nanocomposites


This work explores the use of supercritical carbon dioxide (sc-CO2) conditions as an innovative and environmentally friendly treatment of plant fibres to optimize their performance for integration into composite materials. This study evaluates, in particular, the influence of this treatment on the mechanical, thermal, hygroscopic properties and biochemical features of industrial hemp bast fibres. Two distinct settings were tested by tuning time, temperature and pressure parameters to assess the influence of the severity of the treatment on the fibre quality. Results show that sc-CO2 treatment induces an increase in the fibre fineness and a decrease in their moisture sensitivity while maintaining their initial resistance to temperature. These changes are consistent with the measured decrease in the relative content of hemicelluloses. A significant decrease in the tensile rigidity and strength is also observed as a function of the severity of sc-CO2 treatment, counterbalancing a little bit the benefits retained on the other properties.



The authors are grateful for general and financial support from the Centre National de la Recherche Scientifique (CNRS-France) and the University of Bourgogne Franche-Comté. C.F. is thankful for a PhD fellowship awarded by the Conseil Régional de Bourgogne (France) in the frame of the “Jeunes Chercheurs Entrepreneurs-2016” program.


  1. 1.
    Mohanty AK, Misra M, Drzal LT (2005) Natural fibers, biopolymers, and biocomposites. Taylor & Francis, Boca RatonCrossRefGoogle Scholar
  2. 2.
    Pickering KL, Efendy MGA, Le TM (2016) A review of recent developments in natural fibre composites and their mechanical performance. Compos Part Appl Sci Manuf 83:98–112. CrossRefGoogle Scholar
  3. 3.
    Liu M, Thygesen A, Summerscales J, Meyer AS (2017) Targeted pre-treatment of hemp bast fibres for optimal performance in biocomposite materials: a review. Ind Crops Prod 108:660–683. CrossRefGoogle Scholar
  4. 4.
    Coroller G, Lefeuvre A, Le Duigou A et al (2013) Effect of flax fibres individualisation on tensile failure of flax/epoxy unidirectional composite. Compos Part Appl Sci Manuf 51:62–70. CrossRefGoogle Scholar
  5. 5.
    Rask M, Madsen B, Sørensen BF et al (2012) In situ observations of microscale damage evolution in unidirectional natural fibre composites. Compos Part Appl Sci Manuf 43:1639–1649. CrossRefGoogle Scholar
  6. 6.
    Placet V, Méteau J, Froehly L et al (2014) Investigation of the internal structure of hemp fibres using optical coherence tomography and Focused Ion Beam transverse cutting. J Mater Sci 49:8317–8327. CrossRefGoogle Scholar
  7. 7.
    Charlet K, Béakou A (2011) Mechanical properties of interfaces within a flax bundle—Part I: experimental analysis. Int J Adhes Adhes 31:875–881. CrossRefGoogle Scholar
  8. 8.
    Dhakal H, Zhang Z, Richardson M (2007) Effect of water absorption on the mechanical properties of hemp fibre reinforced unsaturated polyester composites. Compos Sci Technol 67:1674–1683. CrossRefGoogle Scholar
  9. 9.
    Le Duigou A, Davies P, Baley C (2009) Seawater ageing of flax/poly(lactic acid) biocomposites. Polym Degrad Stab 94:1151–1162. CrossRefGoogle Scholar
  10. 10.
    Pucci MF, Liotier P-J, Seveno D et al (2017) Wetting and swelling property modifications of elementary flax fibres and their effects on the liquid composite molding process. Compos Part Appl Sci Manuf 97:31–40. CrossRefGoogle Scholar
  11. 11.
    Peach J, Eastoe J (2014) Supercritical carbon dioxide: a solvent like no other. Beilstein J Org Chem 10:1878–1895. CrossRefGoogle Scholar
  12. 12.
    Zhang X, Heinonen S, Levänen E (2014) Applications of supercritical carbon dioxide in materials processing and synthesis. RSC Adv 4:61137–61152. CrossRefGoogle Scholar
  13. 13.
    Schmidt A, Bach E, Schollmeyer E (2002) Damage to natural and synthetic fibers treated in supercritical carbon dioxide at 300 bar and temperatures up to 160 C. Text Res J 72:1023–1032CrossRefGoogle Scholar
  14. 14.
    Demagalhaes Nunes Da ponte ML, Da Silva Lopes JA, Vesna N-V et al (2013) Method for direct treatment of cork stoppers, using supercritical fluids, Patent WO/2010/093273Google Scholar
  15. 15.
    Serna LVD, Alzate CEO, Alzate CAA (2016) Supercritical fluids as a green technology for the pretreatment of lignocellulosic biomass. Bioresour Technol 199:113–120. CrossRefGoogle Scholar
  16. 16.
    Attard TM, Bainier C, Reinaud M et al (2018) Utilisation of supercritical fluids for the effective extraction of waxes and Cannabidiol (CBD) from hemp wastes. Ind Crops Prod 112:38–46. CrossRefGoogle Scholar
  17. 17.
    Patil PD, Dandamudi KPR, Wang J et al (2018) Extraction of bio-oils from algae with supercritical carbon dioxide and co-solvents. J Supercrit Fluids 135:60–68. CrossRefGoogle Scholar
  18. 18.
    Gutiérrez MC, de Rosa PTV, De Paoli M-A, Felisberti MI (2012) Biocompósitos de acetato de celulose e fibras curtas de Curauá tratadas com CO2 supercrítico. Polímeros 22:295–302. CrossRefGoogle Scholar
  19. 19.
    张华, 张建春, 郝新敏 (2009) Degumming method of hemp fiber, Patent CN100564619CGoogle Scholar
  20. 20.
    Placet V, Day A, Beaugrand J (2017) The influence of unintended field retting on the physicochemical and mechanical properties of industrial hemp bast fibres. J Mater Sci 52:5759–5777. CrossRefGoogle Scholar
  21. 21.
    Hill CAS, Norton A, Newman G (2009) The water vapor sorption behavior of natural fibers. J Appl Polym Sci 112:1524–1537. CrossRefGoogle Scholar
  22. 22.
    Placet V, Trivaudey F, Cisse O et al (2012) Diameter dependence of the apparent tensile modulus of hemp fibres: a morphological, structural or ultrastructural effect? Compos Part Appl Sci Manuf 43:275–287. CrossRefGoogle Scholar
  23. 23.
    Martin N, Mouret N, Davies P, Baley C (2013) Influence of the degree of retting of flax fibers on the tensile properties of single fibers and short fiber/polypropylene composites. Ind Crops Prod 49:755–767. CrossRefGoogle Scholar
  24. 24.
    Alix S, Colasse L, Morvan C et al (2014) Pressure impact of autoclave treatment on water sorption and pectin composition of flax cellulosic-fibres. Carbohydr Polym 102:21–29. CrossRefGoogle Scholar
  25. 25.
    Hailwood AJ, Horrobin S (1946) Absorption of water by polymers: analysis in terms of a simple model. Trans Faraday Soc 42:B084–B092. CrossRefGoogle Scholar
  26. 26.
    Li T, Cheng D, Avramidis S et al (2017) Response of hygroscopicity to heat treatment and its relation to durability of thermally modified wood. Constr Build Mater 144:671–676. CrossRefGoogle Scholar
  27. 27.
    Thygesen A, Oddershede J, Lilholt H et al (2005) On the determination of crystallinity and cellulose content in plant fibres. Cellulose 12:563–576. CrossRefGoogle Scholar
  28. 28.
    Li Y, Pickering KL (2008) Hemp fibre reinforced composites using chelator and enzyme treatments. Compos Sci Technol 68:3293–3298. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Department of Applied Mechanics, FEMTO-ST Institute, CNRS/UFC/ENSMM/UTBMUniversity of Bourgogne Franche-ComtéBesançonFrance
  2. 2.Departement of OrganoMetallic and Catalysis for Bio- and Eco-Compatible Chemistry, ICMUB Institute, UMR CNRS 6302University of Bourgogne Franche-ComtéDijonFrance
  3. 3.DRIVE EA1859University of Bourgogne Franche-ComtéNeversFrance
  4. 4.INRA, UMR 614, Fractionnement des Agro Ressources et EnvironnementUniversity of Champagne-ArdenneReimsFrance
  5. 5.INRAUR1268 Biopolymères Interactions AssemblagesNantesFrance
  6. 6.UMR PAMUniversity of Bourgogne Franche-ComtéDijonFrance

Personalised recommendations