Advertisement

Enhancing energy storage capacity of B3+-intercalated Ti3C2Tx by combining its three-dimensional network structure with hollow carbon nanospheres

  • 56 Accesses

Abstract

Ti3C2Tx shows potential as an electrode material of supercapacitors due to its unique layered structures for ion diffusion as well as excellent chemical/physical properties. However, the layer stacking and the insufficient conductivity due to the terminated surface groups have limited this application essentially. In the present study, a three-dimensional B3+ ion-intercalated Ti3C2Tx network (B-Ti3C2Tx) was combined with hollow carbon nanospheres (HCNS), which improved the electric transport performance of Ti3C2Tx by reducing the surface functional groups and hindering the restacking of Ti3C2Tx nanosheets effectively. Thus, a new set of 3D hierarchical B-Ti3C2Tx/HCNS composite materials was obtained here with a superior electrochemical performance higher than that of single Ti3C2Tx in the present study, and many other reported Ti3C2Tx-containing materials in literature. In addition, an excellent electrochemical cycling stability with above 91% retention over 3000 cycles was also obtained for this new hybrid material. This work provides a new direction to promote the Ti3C2Tx-based materials for high-performance supercapacitors.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

References

  1. 1

    Nocera DG (2009) Living healthy on a dying planet. Chem Soc Rev 38(1):13–15

  2. 2

    Chu S, Majumdar A (2012) Opportunities and challenges for a sustainable energy future. Nature 488(7411):294–303

  3. 3

    Geng PB, Zheng SS, Tang H, Zhu RM, Zhang L, Cao S, Xue HG, Pang H (2018) Transition metal sulfides based on graphene for electrochemical energy storage. Adv Energy Mater 8(15):26

  4. 4

    Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7(11):845–854

  5. 5

    Choudhary N, Li C, Moore J, Nagaiah N, Zhai L, Jung Y, Thomas J (2017) Asymmetric supercapacitor electrodes and devices. Adv Mater 29(21):1605336–1605366

  6. 6

    Dubal DP, Ayyad O, Ruiz V, Gomez-Romero P (2015) Hybrid energy storage: the merging of battery and supercapacitor chemistries. Chem Soc Rev 44(7):1777–1790

  7. 7

    Huang Y, Zhong M, Huang Y, Zhu MS, Pei ZX, Wang ZF, Xue Q, Xie XM, Zhi CY (2015) A self-healable and highly stretchable supercapacitor based on a dual crosslinked polyelectrolyte. Nat Commun 6:10310–10318

  8. 8

    Qi DP, Liu Y, Liu ZY, Zhang L, Chen XD (2017) Design of architectures and materials in in-plane micro-supercapacitors: current status and future challenges. Adv Mater 29(5):1602802–1602821

  9. 9

    Zhang GX, Xiao X, Li B, Gu P, Xue HG, Pang H (2017) Transition metal oxides with one-dimensional/one-dimensional-analogue nanostructures for advanced supercapacitors. J Mater Chem A 5(18):8155–8186

  10. 10

    Li Y, Xu YX, Liu Y, Pang H (2019) Exposing 001 crystal plane on hexagonal Ni-MOF with surface-grown cross-linked mesh-structures for electrochemical energy storage. Small 15(36):8

  11. 11

    Guo YP, Wei YQ, Li HQ, Zhai TY (2017) Layer structured materials for advanced energy storage and conversion. Small 13(45):1701649–1701671

  12. 12

    Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6(3):183–191

  13. 13

    Zheng Y, Zheng SS, Xue HG, Pang H (2018) Metal-organic frameworks/graphene-based materials: preparations and applications. Adv Funct Mater 28(47):28

  14. 14

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A (2011) Single-layer MoS2 transistors. Nat Nanotechnol 6(3):147–150

  15. 15

    Novoselov KS, Jiang D, Schedin F, Booth TJ, Khotkevich VV, Morozov SV, Geim AK (2005) Two-dimensional atomic crystals. Proc Natl Acad Sci USA 102(30):10451–10453

  16. 16

    Ma RZ, Sasaki T (2010) Nanosheets of oxides and hydroxides: ultimate 2D charge-bearing functional crystallites. Adv Mater 22(45):5082–5104

  17. 17

    Coleman JN, Lotya M, O’Neill A, Bergin SD, King PJ, Khan U, Young K, Gaucher A, De S, Smith RJ, Shvets IV, Arora SK, Stanton G, Kim HY, Lee K, Kim GT, Duesberg GS, Hallam T, Boland JJ, Wang JJ, Donegan JF, Grunlan JC, Moriarty G, Shmeliov A, Nicholls RJ, Perkins JM, Grieveson EM, Theuwissen K, McComb DW, Nellist PD, Nicolosi V (2011) Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331(6017):568–571

  18. 18

    Ghidiu M, Lukatskaya MR, Zhao MQ, Gogotsi Y, Barsoum MW (2014) Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature 516(7529):78-U171

  19. 19

    Zhao MQ, Ren CE, Ling Z, Lukatskaya MR, Zhang CF, Van Aken KL, Barsoum MW, Gogotsi Y (2015) Flexible MXene/Carbon nanotube composite paper with high volumetric capacitance. Adv Mater 27(2):339–345

  20. 20

    Rakhi RB, Ahmed B, Hedhili MN, Anjum DH, Alshareef HN (2015) Effect of postetch annealing gas composition on the structural and electrochemical properties of Ti2CTx MXene electrodes for supercapacitor applications. Chem Mater 27(15):5314–5323

  21. 21

    Naguib M, Halim J, Lu J, Cook KM, Hultman L, Gogotsi Y, Barsoum MW (2013) New two-dimensional niobium and vanadium carbides as promising materials for Li-ion batteries. J Am Chem Soc 135(43):15966–15969

  22. 22

    Boota M, Anasori B, Voigt C, Zhao MQ, Barsoum MW, Gogotsi Y (2016) Pseudocapacitive electrodes produced by oxidant-free polymerization of pyrrole between the layers of 2D titanium carbide (MXene). Adv Mater 28(7):1517–1522

  23. 23

    Lukatskaya MR, Mashtalir O, Ren CE, Dall’Agnese Y, Rozier P, Taberna PL, Naguib M, Simon P, Barsoum MW, Gogotsi Y (2013) Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 341(6153):1502–1505

  24. 24

    Tang Q, Zhou Z, Shen P (2012) Are MXenes promising anode materials for Li ion batteries? Computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2X2 (X = F, OH) monolayer. J Am Chem Soc 134(40):16909–16916

  25. 25

    Ma TY, Cao JL, Jaroniec M, Qiao SZ (2016) Interacting carbon nitride and titanium carbide nanosheets for high-performance oxygen evolution. Angew Chem Int Edit 55(3):1138–1142

  26. 26

    Naguib M, Mashtalir O, Carle J, Presser V, Lu J, Hultman L, Gogotsi Y, Barsoum MW (2012) Two-dimensional transition metal carbides. ACS Nano 6(2):1322–1331

  27. 27

    Feng A, Yu Y, Jiang F, Wang Y, Mi L, Yu Y, Song L (2017) Fabrication and thermal stability of NH4HF2-etched Ti3C2 MXene. Ceram Int 43(8):6322–6328

  28. 28

    Zhang T, Pan L, Tang H, Du F, Guo Y, Qiu T, Yang J (2017) Synthesis of two-dimensional Ti3C2Tx MXene using HCl + LiF etchant: enhanced exfoliation and delamination. J Alloys Compd 695:818–826

  29. 29

    Li J, Yuan XT, Lin C, Yang YQ, Xu L, Du X, Xie JL, Lin JH, Sun JL (2017) Achieving high pseudocapacitance of 2D titanium carbide (MXene) by cation intercalation and surface modification. Adv Energy Mater 7(15):1602725–1602733

  30. 30

    Wang Y, Dou H, Wang J, Ding B, Xu YL, Chang Z, Hao XD (2016) Three-dimensional porous MXene/layered double hydroxide composite for high performance supercapacitors. J Power Sources 327:221–228

  31. 31

    Rakhi RB, Ahmed B, Anjum D, Alshareef HN (2016) Direct chemical synthesis of MnO2 nanowhiskers on transition metal carbide surfaces for supercapacitor applications. ACS Appl Mater Interfaces 8(29):18806–18814

  32. 32

    Chang TH, Zhang TR, Yang HT, Li KR, Tian Y, Lee JY, Chen PY (2018) Controlled crumpling of two-dimensional titanium carbide (MXene) for highly stretchable, bendable, efficient supercapacitors. ACS Nano 12(8):8048–8059

  33. 33

    Zhang XF, Liu Y, Dong SL, Yang JQ, Liu XD (2019) Flexible electrode based on multi-scaled MXene (Ti3C2Tx) for supercapacitors. J Alloys Compd 790:517–523

  34. 34

    Hu Q, Sun D, Wu Q, Wang H, Wang L, Liu B, Zhou A, He J (2013) MXene: a new family of promising hydrogen storage medium. J Phys Chem A 117(51):14253–14260

  35. 35

    Zang L, Sun W, Liu S, Huang Y, Yuan H, Tao Z, Wang Y (2018) Enhanced hydrogen storage properties and reversibility of LiBH4 confined in two-dimensional Ti3C2. ACS Appl Mater Interfaces 10(23):19598–19604

  36. 36

    Cheng X, Zu L, Jiang Y, Shi D, Cai X, Ni Y, Lin S, Qin Y (2018) A titanium-based photo-Fenton bifunctional catalyst of mp-MXene/TiO2−x nanodots for dramatic enhancement of catalytic efficiency in advanced oxidation processes. Chem Commun 54(82):11622–11625

  37. 37

    Pandey RP, Rasool K, Madhavan VE, Aïssa B, Gogotsi Y, Mahmoud KA (2018) Ultrahigh-flux and fouling-resistant membranes based on layered silver/MXene (Ti3C2Tx) nanosheets. J Mater Chem A 6(8):3522–3533

  38. 38

    Luo J, Fang C, Jin C, Yuan H, Sheng O, Fang R, Zhang W, Huang H, Gan Y, Xia Y, Liang C, Zhang J, Li W, Tao X (2018) Tunable pseudocapacitance storage of MXene by cation pillaring for high performance sodium-ion capacitors. J Mater Chem A 6(17):7794–7806

  39. 39

    Lu M, Han W, Li H, Shi W, Wang J, Zhang B, Zhou Y, Li H, Zhang W, Zheng W (2019) Tent-pitching-inspired high-valence period 3-cation pre-intercalation excels for anode of 2D titanium carbide (MXene) with high Li storage capacity. Energy Storage Mater. 16:163–168

  40. 40

    Simon P (2017) Two-dimensional MXene with controlled interlayer spacing for electrochemical energy storage. ACS Nano 11(3):2393–2396

  41. 41

    Lukatskaya MR, Bak S-M, Yu X, Yang X-Q, Barsoum MW, Gogotsi Y (2015) Probing the mechanism of high capacitance in 2D titanium carbide using in situ X-ray absorption spectroscopy. Adv Energy Mater 5(15):1500589–1500593

  42. 42

    Kou Y, Xu YH, Guo ZQ, Jiang DL (2011) Supercapacitive energy storage and electric power supply using an Aza-fused pi-Conjugated microporous framework. Angew Chem Int Edit 50(37):8753–8757

  43. 43

    Dall’Agnese Y, Lukatskaya MR, Cook KM, Taberna PL, Gogotsi Y, Simon P (2014) High capacitance of surface-modified 2D titanium carbide in acidic electrolyte. Electrochem Commun 48:118–122

  44. 44

    Hu MM, Li ZJ, Hu T, Zhu SH, Zhang C, Wang XH (2016) High-capacitance mechanism for Ti3C2TX MXene by in situ electrochemical Raman spectroscopy investigation. ACS Nano 10(12):11344–11350

  45. 45

    Wen YY, Rufford TE, Chen XZ, Li N, Lyu MQ, Dai LM, Wang LZ (2017) Nitrogen-doped Ti3C2Tx MXene electrodes for high-performance supercapacitors. Nano Energy 38:368–376

  46. 46

    Lee JSM, Briggs ME, Hu CC, Cooper AI (2018) Controlling electric double-layer capacitance and pseudocapacitance in heteroatom-doped carbons derived from hypercrosslinked microporous polymers. Nano Energy 46:277–289

Download references

Acknowledgements

The authors would like to acknowledge the financial supports from National Key R&D Program of China (2018YFC1508704), Natural Key Foundation of Jiangsu Province (BK2011025), and National Natural Science Foundation of China (50979028).

Author information

Correspondence to Jianfeng Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 7412 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Deng, Y., Zhang, J. et al. Enhancing energy storage capacity of B3+-intercalated Ti3C2Tx by combining its three-dimensional network structure with hollow carbon nanospheres. J Mater Sci 55, 4769–4779 (2020). https://doi.org/10.1007/s10853-019-04285-y

Download citation