Journal of Materials Science

, Volume 55, Issue 7, pp 2750–2763 | Cite as

Optimization of multiferroic properties in BiFeO3–BaTiO3-based ceramics by tuning oxygen octahedral distortion

  • Y. Li
  • S. D. Zhou
  • L. Zhu
  • H. Wu
  • Y. G. WangEmail author
  • F. M. Pan


The structural evolution and variation in multiferroic properties induced by sintering conditions were investigated in the 0.67(Sm0.12Bi0.88FeO3)–0.33BaTiO3 ceramics. Sintering at various temperatures induces the transition between tetragonal and cubic phases as well as the variation in distortion degree of oxygen octahedra, contributing to the optimization of multiferroic properties. The magnetoelectric coupling effect is induced by the destabilized cycloidal spin structure resulting from the distortion in FeO6 octahedra, and the magnetoelectric coefficient of the ceramics depends on the destabilized degree in the spin structure, which relates to the sintering temperature. The ceramic sintered at 1000 °C with a relatively high dielectric constant shows a remnant magnetization, remnant polarization and magnetoelectric coupling coefficient of ~ 0.55 emu/g, ~ 8.9 μC/cm2 and ~ 5 mV/(cm · Oe), respectively.



This work is supported by the National Natural Science Foundation of China (Grant No. 11174148) and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Compliance with ethical standard

Conflict of interest

The authors declare that they have no conflict of interests.


  1. 1.
    Dai HY, Xue RZ, Chen ZP, Li T, Chen J, Xiang HW (2014) Effect of Eu, Ti co-doping on the structural and multiferroic properties of BiFeO3 ceramics. Ceram Int 40:15617–15622Google Scholar
  2. 2.
    Valant M, Axelsson AK, Alford N (2007) Peculiarities of a solid-state synthesis of multiferroic polycrystalline BiFeO3. Chem Mater 19:5431–5436Google Scholar
  3. 3.
    Sangian H, Mirzaee O, Tajally M, Lavasani SANH (2018) Monitoring the Bi/Fe ratio at different pH values in BiFeO3 nanoparticles derived by normal and reverse chemical co-precipitation: a comparative study on the purity, microstructure and magnetic properties. Ceram Int 44:5109–5115Google Scholar
  4. 4.
    Wang J et al (2003) Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299:1719–1722Google Scholar
  5. 5.
    Ruette B, Zvyagin S, Pyatakov AP, Bush A, Li JF, Belotelov VI, Zvezdin AK, Viehland D (2004) Magnetic-field-induced phase transition in BiFeO3 observed by high-field electron spin resonance: cycloidal to homogeneous spin order. Phys Rev B 69:064114Google Scholar
  6. 6.
    Sando D, Agbelele A, Rahmedov D, Liu J, Rovillain P, Toulouse C et al (2013) Crafting the magnonic and spintronic response of BiFeO3 films by epitaxial strain. Nat Mater 12:641–646Google Scholar
  7. 7.
    Sánchez D, Ortega N, Kumar A, Sreenivasulu G, Katiyar RS, Scott JF et al (2013) Room-temperature single phase multiferroic magnetoelectrics: Pb(Fe, M)x(Zr, Ti)1−xO3 [M = Ta, Nb]. J Appl Phys 113:074105Google Scholar
  8. 8.
    Diéguez O, Íñiquez J (2011) First-principles investigation of morphotropic transitions and phase-change functional responses in BiFeO3–BiCoO3 multiferroic solid solutions. Phys Rev Lett 107:057601Google Scholar
  9. 9.
    Fernández-Posada CM, Castro A, Kiat JM, Porcher F, Peña O, AlgueróM AH (2016) A novel perovskite oxide chemically designed to show multiferroic phase boundary with room-temperature magnetoelectricity. Nat Commun 7:12772Google Scholar
  10. 10.
    Datta K, Neder RB, Chen J, Neuefeind JC, Mihailova B (2017) Favorable concurrence of static and dynamic phenomena at the morphotropic phase boundary of xBiNi0.5Zr0.5O3−(1−x)PbTiO3. Phys Rev Lett 119:207604Google Scholar
  11. 11.
    Yang Y, Zhou YB, Ren J, Zheng QJ, Lam KH, Lin DM (2018) Coexistence of three ferroelectric phases and enhanced piezoelectric properties in BaTiO3–CaHfO3 lead-free ceramics. J Eur Ceram Soc 38:557–566Google Scholar
  12. 12.
    Luo J, Sun W, Zhou Z, Lee HY, Wang K, Zhu FY et al (2017) Monoclinic (K, Na)NbO3 ferroelectric phase in epitaxial films. Adv Electron Mater 3:1700226Google Scholar
  13. 13.
    Singh A, Moriyoshi C, Kuroiwa Y, Pandey D (2013) Evidence for local monoclinic structure, polarization rotation, and morphotropic phase transitions in (1−x)BiFeO3−xBaTiO3 solid solutions: a high-energy synchrotron X-ray powder diffraction study. Phys Rev B 88:024113Google Scholar
  14. 14.
    Kim S, Khanal GP, Nam HW, Fujii I, Ueno S, Moriyoshi C et al (2017) Structural and electrical characteristics of potential candidate lead-free BiFeO3–BaTiO3 piezoelectric ceramics. J Appl Phys 122:164105Google Scholar
  15. 15.
    Kim JS, Cheon CI, Lee CH, Jang PW (2004) Weak ferromagnetism in the ferroelectric BiFeO3–ReFeO3–BaTiO3 solid solutions (Re = Dy, La). J Appl Phys 96:468–474Google Scholar
  16. 16.
    Li Y, Wang YG, Zhu L, Zhou SD, Wu H (2019) Structural evolution in 0.67(Smx Bi1−x)FeO3–0.33BaTiO3 solid solution and its effect on multiferroic properties at room temperature. Mater Chem Phys 230:100–106Google Scholar
  17. 17.
    Chen J, Cheng J (2014) Enhanced thermal stability of lead-free high temperature 0.75BiFeO3–0.25BaTiO3 ceramics with excess Bi content. J Alloy Compd 589:115–119Google Scholar
  18. 18.
    Guan SB, Yang HB, Zhao YZ, Zhang R (2018) Effect of Li2CO3 addition in BiFeO3–BaTiO3 ceramics on the sintering temperature, electrical properties and phase transition. J Alloy Compd 735:386–393Google Scholar
  19. 19.
    Kim DJ, Lee MH, Park JS, Kim M-H, Song TK, Kim W-J et al (2015) Effects of Sintering Temperature on the electric properties of Mn-modified BiFeO3–BaTiO3 bulk ceramics. J Koren Phys Soc 66:1115–1119Google Scholar
  20. 20.
    Zhou C, Yang H, Zhou Q, Chen G, Li W, Wang H (2013) Effects of Bi excess on the structure and electrical properties of high-temperature BiFeO3–BaTiO3 piezoelectric ceramics. J Mater Sci Mater Electron 24:1685–1689. Google Scholar
  21. 21.
    Li Y, Wang YG, Zhou SD, Wu H (2019) Structural evolution and its effect on multiferroic properties in magnetoelectric 0.67Sm0.12Bi0.88FeO3–0.33BaTiO3 ceramics by tuning the cooling rate. J Mater Sci 54:7428–7437. Google Scholar
  22. 22.
    Lu J, Pan DA, Yang B et al (2008) Wideband magnetoelectric measurement system with the application of a virtual multi-channel lock-in amplifier. Meas Sci Technol 19:045702Google Scholar
  23. 23.
    Cheng S, Zhang BP, Zhao L, Wang KK (2018) Enhanced insulating and piezoelectric properties of 0.7BiFeO3–0.3BaTiO3 lead-free ceramics by optimizing calcination temperature: analysis of Bi3+ volatilization and phase structures. J Mater Chem C 6:3982–3989Google Scholar
  24. 24.
    Panda A, Govindaraj R, Mythili R, Amarendra G (2019) Formation of bismuth iron oxide based core–shell structures and their dielectric, ferroelectric and magnetic properties. J Mater Chem C 7:1280–1291Google Scholar
  25. 25.
    Kumar N, Patterson EA, Frömling T, Gorzkowski EP, Eschbach P, Love I et al (2018) Defect mechanisms in BaTiO3–BiMO3 ceramics. J Am Ceram Soc 101:2376–2390Google Scholar
  26. 26.
    Betancourt-Cantera LG, Bolarín-Miró AM, Cortés-Escobedo CA, Hernández-Cruz LE, Sánchez-De Jesús F (2018) Structural transitions and multiferroic properties of high Ni-doped BiFeO3. J Magn Magn Mater 456:381–389Google Scholar
  27. 27.
    Le TH, Hao NV, Thoan NH, Hong NTM, Hai PV, Thang NV et al (2019) Origin of enhanced magnetization in (La, Co) codoped BiFeO3 at the morphotropic phase boundary. Ceram Int 45:18480–18486Google Scholar
  28. 28.
    Mumtaz F, Jaffari GH, ul Hassan Q, Shah SI (2018) Correlation between ionic size and valence state of tetra, penta and hexavalent B-site substitution with solubility limit, phase transformation and multiferroic properties of Bi0.875Eu0.125FeO3. Phys B 538:213–224Google Scholar
  29. 29.
    Pedro-García F, Betancourt-Cantera LG, Bolarín-Miró AM, Cortés-Escobedo CA, Barba-Pingarrón A, Sánchez-De Jesús F (2019) Magnetoelectric coupling in multiferroic BiFeO3 by co-doping with strontium and nickel. Ceram Int 45:10114–10119Google Scholar
  30. 30.
    Kumar P, Kar M (2014) Effect of structural transition on magnetic and dielectric properties of La and Mn co-substituted BiFeO3 ceramics. Mater Chem Phys 148:968–977Google Scholar
  31. 31.
    Sharif MK, Khan MA, Warsi MF, Ramzan M, Hussain A (2018) Structural and ferroelectric properties of hafnium substituted BiFeO3 multiferroics synthesized via auto combustion technique. Ceram Int 44:20648–20655Google Scholar
  32. 32.
    Perejóna A, Gil-Gonzáleza E, Sánchez-Jiméneza PE, Westc AR, Pérez-Maqueda LA (2019) Electrical properties of bismuth ferrites: Bi2Fe4O9 and Bi25FeO39. J Eur Ceram Soc 39:330–339Google Scholar
  33. 33.
    Jang BK, Lee JH, Chu K, Sharma P, Kim GY et al (2016) Electric-field-induced spin disorder-to-order transition near a multiferroic triple phase point. Nat Phys 13:189–197Google Scholar
  34. 34.
    Mumtaz F, Jaffari GH, Shah SI (2018) Peculiar magnetism in Eu substituted BiFeO3 and its correlation with local structure. J Phys Condens Matter 30:435802Google Scholar
  35. 35.
    Graf ME, Di NS, Barral MA, Medina LM, Negri RM, Sepliarsky M, Llois AM (2018) Rhombohedral R3c to orthorhombic Pnma phase transition induced by Y-doping in BiFeO3. J Phys Condens Matter 30:285701Google Scholar
  36. 36.
    Zhu LF, Zhang BP, Zhao L, Li JF (2014) High piezoelectricity of BaTiO3–CaTiO3–BaSnO3 lead-free ceramics. J Mater Chem C 2:4764–4771Google Scholar
  37. 37.
    Xue PJ, Hu Y, Xia WR, Wu H, Zhu XH (2016) Molten-salt synthesis of BaTiO3 powders and their atomic-scale structural characterization. J Alloy Compd 695:2870–2877Google Scholar
  38. 38.
    Jha PA, Jha PK, Jha AK, Kotnala RK, Dwivedi RK (2014) Phase transformation and two-mode phonon behavior of (1−x)[BaZr0.025Ti0.975O3]–(x)[BiFeO3] solid solutions. J Alloy Compd 600:186–192Google Scholar
  39. 39.
    Pasha UM, Zheng H, Thakur OP, Feteira A, Whittle KR, Sinclair DC, Reaney IM (2007) In situ Raman spectroscopy of A-site doped barium titanate. Appl Phys Lett 91:062908Google Scholar
  40. 40.
    Zia L, Jaffari GH, Awan NA, Rahman JU, Lee S (2019) Electrical response of mixed phase (1−x)BiFeO3−xPbTiO3 solid solution: Role of tetragonal phase and tetragonality. J Alloy Compd 786:98–108Google Scholar
  41. 41.
    Sinha S, Chatterjee SK, Ghosh J, Meikap AK (2015) Electrical transport properties of polyvinyl alcohol–selenium nanocomposite films at and above room temperature. J Mater Sci 50:1632–1645. CrossRefGoogle Scholar
  42. 42.
    Lufaso MW (2004) Crystal structures, modeling, and dielectric property relationships of 2:1 ordered Ba3MM′2O9 (M = Mg, Ni, Zn; M′ = Nb, Ta) perovskites. Chem Mater 16:2148–2156Google Scholar
  43. 43.
    Xiong Z, Yang CT, Tang B, Fang ZX, Chen HT, Zhang SR (2018) Structure–property relationships of perovskite-structured Ca0.61Nd0.26Ti1−x (Cr0.5Nb0.5)xO3 ceramics. Ceram Int 44:7384–7392Google Scholar
  44. 44.
    Curecheriu LP, Buscaglia MT, Buscaglia V, Mitoseriu L, Postolache P, Ianculescu A, Nanni P (2010) Functional properties of magnetoelectric ceramics BaTiO3–Ni0.5Zn0.5Fe2O4 prepared from powders with core–shell structure. J Appl Phys 107:104106Google Scholar
  45. 45.
    Marzouki A, Harzali H, Loyau V, Gemeiner P, Zehani K, Dkhil B, Bessais L, Megriche A (2018) Large magnetoelectric response and its origin in bulk Co-doped BiFeO3 synthesized by a stirred hydrothermal process. Acta Mater 145:316–321Google Scholar
  46. 46.
    Sharma P, Satapathy S, Varshney D, Guptab PK (2015) Effect of sintering temperature on structure and multiferroic properties of Bi0.825Sm0.175FeO3 ceramics. Mater Chem Phys 162:469–476Google Scholar
  47. 47.
    Gotardo RAM, Silva EFR, Montanher DZ, Santos GM, Silva KL, Cótica LF et al (2017) Improved magnetic properties and structural characterizations in Mn doped 0.9BiFeO3–0.1BaTiO3 compositions. Scr Mater 130:161–164Google Scholar
  48. 48.
    Usama HM, Akter A, Zubair MA (2017) Modulation of structural, electrical, and magnetic features with dilute Zr substitution in Bi0.8La0.2Fe1−xZrxO3 system. J Appl Phys 122:244102Google Scholar
  49. 49.
    Zhou W, Zheng QJ, Li Y, Li Q, Wan Y, Wu M, Lin DM (2015) Structure, ferroelectric, ferromagnetic, and piezoelectric properties of Al-modified BiFeO3–BaTiO3 multiferroic ceramics. Phys Status Solidi A 212:632–639Google Scholar
  50. 50.
    Khomchenko VA, Karpinsky DV, Ivanov MS, Franz A, Dubkov SV, Silibin MV, Paixão JA (2019) Effect of combined Ca/Ti and Ca/Nb substitution on the crystal and magnetic structure of BiFeO3. J Magn Magn Mater 491:165561Google Scholar
  51. 51.
    Satyanarayana S, Sarma SCh, Peter SC, Bhattacharya S (2019) Magnetic characterization of nano-sized terbium doped bismuth ferrite synthesized by sol–gel method. J Magn Magn Mater 491:165571Google Scholar
  52. 52.
    Calisir I, Amirov AA, Kleppe AK, Hall DA (2018) Optimisation of functional properties in lead-free BiFeO3–BaTiO3 ceramics through La3+ substitution strategy. J Mater Chem A 6:5378–5397Google Scholar
  53. 53.
    Pan Q, Fang C, Luo HS, Chu BJ (2019) Magnetoelectric response from the enhanced ferromagnetism and flexoelectric response in reduced BiFeO3-based ceramics. J Eur Ceram Soc 39:1057–1064Google Scholar
  54. 54.
    Sahoo S, Hajra S, De M, Mohanta K, Choudhary RNP (2018) Processing, dielectric and impedance spectroscopy of lead free BaTiO3–BiFeO3–CaSnO3. J Alloy Compd 766:25–32Google Scholar
  55. 55.
    Lotey GS, Verma NK (2013) Magnetoelectric coupling in multiferroic Tb-doped BiFeO3 nanoparticles. Mater Lett 111:55–58Google Scholar
  56. 56.
    Shi XX, Liu XQ, Chen XM (2017) Readdressing of magnetoelectric effect in bulk BiFeO3. Adv Funct Mater 27:1604037Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Materials Science and TechnologyNanjing University of Aeronautics and AstronauticsNanjingPeople’s Republic of China
  2. 2.College of ScienceNanjing University of Aeronautics and AstronauticsNanjingPeople’s Republic of China

Personalised recommendations