Prediction of dislocation density in AlN or GaN films deposited on (0001) sapphire

  • S. LayEmail author
  • F. Mercier
  • R. Boichot
  • G. Giusti
  • M. Pons
  • E. Blanquet
Interface Science


The origin of threading dislocations (TDs) in nitride films is not completely understood but it is well established that they degrade the film properties. This work investigates the assumption that they arise from the interface between the film and sapphire substrate owing to small in-plane rotations between nitride domains. Bollmann’s formalism is first used to determine the characteristics of dislocations at the nitride film/sapphire interface that compensate both for the parametric misfit and a small in-plane rotation of the film as frequently observed. It is shown that the dislocation density and line direction depend on the rotation angle. When islands grow and coalesce in the nucleation layer, some interfacial dislocations orientate along [0001] in the boundaries between domains and transform to so-called TDs. The amount of TDs lying in the boundaries between nitride domains is calculated as a function of the rotation angle. Estimations of TD density in the nucleation layer are deduced for a range of domain sizes and compared with experimental values of the literature.


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Balaji M, Claudel A, Fellmann V, Gélard I, Blanquet E, Boichot R, Coindeau S, Roussel H, Pique D, Baskar K, Pons M (2012) Significance of initial stages on the epitaxial growth of AlN using high temperature halide chemical vapor deposition. Phys Status Solidi C 9(3–4):511–514. CrossRefGoogle Scholar
  2. 2.
    Chubarov M, Mercier F, Lay S, Charlot F, Crisci A, Coindeau S, Encinas T, Ferro G, Reboud R, Boichot R (2017) Growth of aluminum nitride on flat and patterned Si (111) by high temperature halide CVD. Thin Solid Films 623:65–71. CrossRefGoogle Scholar
  3. 3.
    Jiang K, Sun X, Ben J, Jia Y, Liu H, Wang Y, Wu Y, Kai C, Li D (2018) The defect evolution in homoepitaxial AlN layers grown by high-temperature metal-organic chemical vapor deposition. CrystEngComm 20(19):2720–2728CrossRefGoogle Scholar
  4. 4.
    Kehagias T, Komninou P, Nouet G, Ruterana P, Karakostas T (2001) Misfit relaxation of the AlN/Al2O3 (0001) interface. Phys Rev B 64(19):195329CrossRefGoogle Scholar
  5. 5.
    Kwon YB, Je JH, Ruterana P, Nouet G (2005) On the origin of a-type threading dislocations in GaN layers. J Vac Sci Technol A 23(6):1588–1591CrossRefGoogle Scholar
  6. 6.
    Qian W, Skowronski M, Degraef M, Doverspike K, Rowland LB, Gaskill DK (1995) Microstructural characterization of alpha-GaN films grown on sapphire by organometallic vapor-phase epitaxy. Appl Phys Lett 66(10):1252–1254. CrossRefGoogle Scholar
  7. 7.
    Ning XJ, Chien FR, Pirouz P, Yang JW, Khan MA (1996) Growth defects in GaN films on sapphire: the probable origin of threading dislocations. J Mater Res 11(3):580–592CrossRefGoogle Scholar
  8. 8.
    Jesser WA, Kuhlmann-Wilsdorf D (1968) Angular distribution of epitaxial gold nuclei on a molybdenite substrate as a function of substrate temperature and nucleus size. Acta Metall 16:1325–1333CrossRefGoogle Scholar
  9. 9.
    Heffelfinger JR, Medlin DL, McCarty KF (1999) On the initial stages of AlN thin-film growth onto (0001) oriented Al2O3 substrates by molecular beam epitaxy. J Appl Phys 85(1):466–472CrossRefGoogle Scholar
  10. 10.
    Tokumoto Y, Shibata N, Mizoguchi T, Sugiyama M, Shimogaki Y, Yang J-S, Yamamoto T, Ikuhara Y (2008) High-resolution transmission electron microscopy (HRTEM) observation of dislocation structures in AlN thin films. J Mater Res 23(8):2188–2194CrossRefGoogle Scholar
  11. 11.
    Oliver RA, Kappers MJ, Humphreys CJ (2006) Insights into the origin of threading dislocations in GaNAl2O3 from atomic force microscopy. Appl Phys Lett 89(1):011914CrossRefGoogle Scholar
  12. 12.
    Moram MA, Oliver RA, Kappers MJ, Humphreys CJ (2009) The spatial distribution of threading dislocations in gallium nitride films. Adv Mater 21:3941–3944CrossRefGoogle Scholar
  13. 13.
    Narayanan V, Lorenz K, Kim W, Mahajan S (2001) Origins of threading dislocations in GaN epitaxial layers grown on sapphire by metalorganic chemical vapor deposition. Appl Phys Lett 78(11):1544–1546CrossRefGoogle Scholar
  14. 14.
    Narayanan V, Lorenz K, Kim W, Mahajan S (2002) Gallium nitride epitaxy on (0001) sapphire. Philos Mag A 82(5):885–912CrossRefGoogle Scholar
  15. 15.
    Bollmann W (1970) Crystal defects and crystalline interfaces. Springer, BerlinCrossRefGoogle Scholar
  16. 16.
    Bollmann W (1972) The basic concepts of the 0-lattice theory. Surf Sci 31:1–11CrossRefGoogle Scholar
  17. 17.
    Dakshinamurthy S, Rajan K (1991) An affine transformation description of epitaxial heterostructures. J Electron Mater 20(7):747–752CrossRefGoogle Scholar
  18. 18.
    McIntyre PC, Maggiore CJ, Nastasi M (1997) Epitaxy of Pt thin films on (001) MgO–I. Interface energetics and misfit accommodation. Acta Mater 45(2):869–878CrossRefGoogle Scholar
  19. 19.
    Li QT, Minj A, Chauvat MP, Chen J, Ruterana P (2017) Interface dislocations in InxGa1-xN/GaN heterostructures. Physica Status Solidi (a) 214(4):1600442. CrossRefGoogle Scholar
  20. 20.
    Su XJ, Huang J, Zhang JP, Wang JF, Xu K (2019) Microstructure and influence of buffer layer on threading dislocations in (0001) AlN/sapphire grown by hydride vapor phase epitaxy. J Cryst Growth 515:72–77. CrossRefGoogle Scholar
  21. 21.
    Gay P, Hirsch PB, Kelly A (1953) The estimation of dislocation densities in metals from X-ray data. Acta Metall 1:315–319CrossRefGoogle Scholar
  22. 22.
    Lee SR, West AM, Allerman AA, Waldrip KE, Follstaedt DM, Provencio PP, Koleske DD, Abernathy CR (2005) Effect of threading dislocations on the Bragg peakwidths of GaN, AlGaN, and AlN heterolayers. Appl Phys Lett 86(24):241904CrossRefGoogle Scholar
  23. 23.
    Heying B, Wu XH, Keller S, Li Y, Kapolnek D, Keller BP, DenBaars SP, Speck JS (1996) Role of threading dislocation structure on the x-ray diffraction peak widths in epitaxial GaN films. Appl Phys Lett 68(5):643–645CrossRefGoogle Scholar
  24. 24.
    Wu XH, Fini P, Tarsa EJ, Heying B, Keller S, Mishra UK, DenBaars SP, Speck JS (1998) Dislocation generation in GaN heteroepitaxy. J Cryst Growth 189–190:231–243CrossRefGoogle Scholar
  25. 25.
    Claudel A, Fellmann V, Gélard I, Coudurier N, Sauvage D, Balaji M, Blanquet E, Boichot R, Beutier G, Coindeau S, Pierret A, Attal-Trétout B, Luca S, Crisci A, Baskar K, Pons M (2014) Influence of the V/III ratio in the gas phase on thin epitaxial AlN layers grown on (0001) sapphire by high temperature hydride vapor phase epitaxy. Thin Solid Films 573:140–147CrossRefGoogle Scholar
  26. 26.
    Boichot R, Chen D, Mercier F, Baillet F, Giusti G, Coughlan T, Chubarov M, Pons M (2017) Epitaxial growth of AlN on (0001) sapphire: assessment of HVPE process by a design of experiments approach. Coatings 7:136. CrossRefGoogle Scholar
  27. 27.
    Balaji M, Claudel A, Fellmann V, Gélard I, Blanquet E, Boichot R, Pierret A, Attal-Trétout B, Crisci A, Coindeau S, Roussel H, Pique D, Baskar K, Pons M (2012) Effects of AlN nucleation layers on the growth of AlN films using high temperature hydride vapor phase epitaxy. J Alloy Compd 526:103–109CrossRefGoogle Scholar
  28. 28.
    Su X, Zhang J, Huang J, Zhang J, Wang J, Xu K (2017) Defect structure of high temperature hydride vapor phase epitaxy-grown epitaxial (0001) AlN/sapphire using growth mode modification process. J Cryst Growth 467:82–87CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Univ. Grenoble Alpes, CNRS, Grenoble INP, SIMAPGrenobleFrance
  2. 2.Sil’Tronix Silicon TechnologiesArchampsFrance

Personalised recommendations