Journal of Materials Science

, Volume 55, Issue 7, pp 2870–2880 | Cite as

Network cavity, spatial distribution of sodium and dynamics in sodium silicate melts

  • To Ba Van
  • P. K. Hung
  • L. T. VinhEmail author
  • N. T. T. Ha
  • L. T. San
  • Fumiya Noritake
Computation & theory


Molecular dynamics simulation is carried out for studying the structure and dynamics of sodium silicate melts using the network cavity (NC), NF (network former) cluster and NC cluster. The simulation shows that an NC contains up to six Na, and its radius varies from 1.4 to 4.5 Å. The number of Na atoms located in NC depends strongly on the constituent content of NC-forming atoms. The simulation also reveals that Na and O form the chemical bond. The static structure is found to be heterogeneous with separate Na-poor and Na-rich regions formed by different-type NC clusters, the number and size of which vary with SiO2 content. We also find the sodium deficit around Si and sodium surplus around O. As the status of O changes, Na atoms are redistributed between vicinity spaces of network former (VSNFs). The dynamical structure is heterogeneous with separate regions occupied by an NF cluster of high-sodium-density atoms and a number of NF clusters of low-sodium-density atoms. During hundreds of picoseconds, the sodium atoms are not uniformly distributed throughout VSNFs, but they prefer to move along diffusion pathways. In the SiO2-rich model, the diffusion pathways emerge clearly, while in the SiO2-poor model, these diffusion pathways disappear.



This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant No. 103.05-2017.345.


  1. 1.
    Davidenko AO, Sokolskii VE, Roik AS, Goncharov IA (2014) Structural study of sodium silicate glasses and melts. Inorg Mater 50(12):1289–1296CrossRefGoogle Scholar
  2. 2.
    Zhao Q, Guerette M, Scannell G, Huang L (2012) In-situ high temperature Raman and Brillouin light scattering studies of sodium silicate glasses. J Non-Cryst Solids 358:3418–3426CrossRefGoogle Scholar
  3. 3.
    Jabraoui H, Vaills Y, Hasnaoui A, Badawi M, Ouaskit S (2016) Effect of sodium oxide modifier on structural and elastic properties of silicate glass. J Phys Chem B 120(51):13193–13205CrossRefGoogle Scholar
  4. 4.
    Meyer A, Horbach J, Kob W, Kargl F, Schober H (2004) Channel formation and intermediate range order in sodium silicate melts and glasses. Phys Rev Lett 93(2):027801–027804CrossRefGoogle Scholar
  5. 5.
    Nesbitt HW, Henderson GS, Bancroft GM, Ho R (2015) Experimental evidence for Na coordination to bridging oxygen in Na-silicate glasses: implications for spectroscopic studies and for the modified random network. J Non-Cryst Solids 409:139–148CrossRefGoogle Scholar
  6. 6.
    Koroleva Olga N, Anfilogov Vsevolod N (2013) Structure of Na2O–SiO2 melt as a function of composition: in situ Raman spectroscopic study. J Non-Cryst Solids 375:62–68CrossRefGoogle Scholar
  7. 7.
    Smith W, Greaves GN, Gillan MJ (1995) Computer simulation of sodium disilicate glass. J Chem Phys 103(8):3091–3097CrossRefGoogle Scholar
  8. 8.
    Jabraoui H, Achhal EM, Hasnaoui A, Garden JL, Vaills Y, Ouaskit S (2016) Molecular dynamics simulation of thermodynamic and structural properties of silicate glass: effect of the alkali oxide modifiers. J Non-Cryst Solids 448:16–26CrossRefGoogle Scholar
  9. 9.
    Henderson GS (2005) The structure of silicate melts: a glass perspective. Can Mineral 43:1921–1958CrossRefGoogle Scholar
  10. 10.
    Mountjoy G, Al-Hasni BM, Storey C (2011) Structural organisation in oxide glasses from molecular dynamics modelling. J Non-Cryst Solids 357:2522–2529CrossRefGoogle Scholar
  11. 11.
    Pedone A, Malavasi G, Cormack AN, Segre U, Menziani MC (2007) Insight into elastic properties of binary alkali silicate glasses; prediction and interpretation through atomistic simulation techniques. Chem Mater 19(13):3144–3154CrossRefGoogle Scholar
  12. 12.
    Adkins L, Cormack AN (2011) Large-scale simulations of sodium silicate glasses. J Non-Cryst Solids 357:2538–2541CrossRefGoogle Scholar
  13. 13.
    Malavasi G, Menziani MC, Pedone A, Segre U (2006) Void size distribution in MD-modelled silica glass structures. J Non-Cryst Solids 352:285–296CrossRefGoogle Scholar
  14. 14.
    Sviridov SI (2013) Diffusion of cations in sodium-potassium and sodium-barium silicate melts. Glass Phys Chem 39(2):130–135CrossRefGoogle Scholar
  15. 15.
    Kargl F, Weis H, Unruh T, Meyer A (2012) Self diffusion in liquid aluminium. J Phys Conf Ser 340:012077CrossRefGoogle Scholar
  16. 16.
    Jund P, Kob W, Jullien R (2001) Channel diffusion of sodium in a silicate glass. Phys Rev B 64:134303–134307CrossRefGoogle Scholar
  17. 17.
    Jund P, Kob W, Jullien R (2002) Transport properties of sodium in a silicate glass: a numerical study. Philos Mag B 82(5):597–606CrossRefGoogle Scholar
  18. 18.
    Sunyer E, Jund P, Jullien R (2003) Matrix-controlled channel diffusion of sodium in amorphous silica. J Phys Condens Matter 15:L431–L437CrossRefGoogle Scholar
  19. 19.
    Sunyer E, Jund P, Jullien R (2003) Numerical investigation of ionic transport in glasses: the example of sodium in amorphous silica. J Phys Condens Matter 15:S1659–S1671CrossRefGoogle Scholar
  20. 20.
    Sunyer E, Jund P, Jullien R (2002) Characterization of channel diffusion in a sodium tetrasilicate glass via molecular-dynamics simulations. Phys Rev B 65:214203–214208CrossRefGoogle Scholar
  21. 21.
    Horbach J, Kob W, Binder K (2001) Structural and dynamical properties of sodium silicate melts: an investigation by molecular dynamics computer simulation. Chem Geol 174:87–101CrossRefGoogle Scholar
  22. 22.
    Bauchy M, Micoulaut M (2011) From pockets to channels: density-controlled diffusion in sodium silicates. Phys Rev B 83:184118–184122CrossRefGoogle Scholar
  23. 23.
    Lammert H, Kunow M, Heuer A (2003) Complete identification of alkali sites in ion conducting lithium silicate glasses: a computer study of ion dynamics. Phys Rev Lett 90:215901–251904CrossRefGoogle Scholar
  24. 24.
    Habasaki J, Hiwatari Y (2004) Molecular dynamics study of the mechanism of ion transport in lithium silicate glasses: characteristics of the potential energy surface and structures. Phys Rev B 69:144207–144214CrossRefGoogle Scholar
  25. 25.
    Shajahan M, Razul G, Matharoo GS, Poole PH (2011) Spatial correlation of the dynamic propensity of a glass-forming liquid. J Phys Condens Matter 23:235103–235106CrossRefGoogle Scholar
  26. 26.
    Sillescu H (1999) Heterogeneity at the glass transition: a review. J Non-Cryst Solids 243:81–108CrossRefGoogle Scholar
  27. 27.
    Coslovich D, Pastore G (2009) Dynamics and energy landscape in a tetrahedral network glass-former: direct comparison with models of fragile liquids. J Phys Condens Matter 21:285107CrossRefGoogle Scholar
  28. 28.
    Appignanesi GA, Rodriguez Fris JA (2009) Space and time dynamical heterogeneity in glassy relaxation. The role of democratic clusters. J Phys Condens Matter 21:203103–203126CrossRefGoogle Scholar
  29. 29.
    Glotzer Sharon C (2000) Spatially heterogeneous dynamics in liquids: insights from simulation. J Non-Cryst Solids 274:342–355CrossRefGoogle Scholar
  30. 30.
    Noritake F, Kawamura K, Yoshino T, Takahashi E (2012) Molecular dynamics simulation and electrical conductivity measurement of Na2O·3SiO2 melt under high pressure; relationship between its structure and properties. J Non-Cryst Solids 358:3109–3118CrossRefGoogle Scholar
  31. 31.
    Fabian M, Jovari P, Svab E, Meszaros G, Proffen T, Veress E (2007) Network structure of 0.7SiO2–0.3Na2O glass from neutron and X-ray diffraction and RMC modelling. J Phys Condens Matter 19:335209–335219CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Simulation in Materials Science Research Group, Advanced Institute of Materials ScienceTon Duc Thang UniversityHo Chi Minh CityViet Nam
  2. 2.Faculty of Electrical and Electronics EngineeringTon Duc Thang UniversityHo Chi Minh CityViet Nam
  3. 3.Graduate Faculty of Interdisciplinary ResearchUniversity of YamanashiKofuJapan
  4. 4.Computational Astrophysics LaboratoryRIKENWakoJapan
  5. 5.Department of Computational PhysicsHanoi University of Science and TechnologyHai Ba TrungVietnam

Personalised recommendations