Journal of Materials Science

, Volume 55, Issue 7, pp 3005–3021 | Cite as

Synthesis and physico-chemical properties of poly(N-vinyl pyrrolidone)-based hydrogels with titania nanoparticles

  • Olesya TimaevaEmail author
  • Igor Pashkin
  • Sergey Mulakov
  • Galina Kuzmicheva
  • Petr Konarev
  • Raisa Terekhova
  • Natalia Sadovskaya
  • Orsolya Czakkel
  • Sylvain Prevost
Materials for life sciences


Poly(N-vinyl pyrrolidone) (PVP)-based hydrogels with titania nanoparticles (TN) were synthesized by the sol–gel method for the first time and were characterized in different states (native, freeze-dried, air-dried to constant weight and ground to powder, or swollen to constant weight in H2O or D2O) by various methods such as wide-angle and small-angle X-ray and neutron scattering, neutron spin-echo (NSE) spectroscopy, and scanning electron microscopy. The static (static polymer–polymer correlation length (mesh size), associates of cross-links and PVP microchains) and dynamic (polymer chain relaxation rate, hydrodynamic polymer–polymer correlation length) structural elements were determined. The incorporation of titania nanoparticles into PVP hydrogel slightly increases the size of structural inhomogeneities (an increase in the static and dynamic polymer–polymer correlation length, the formation of associates of cross-links and PVP chains). Titania nanoparticles have an impact on the microstructure of the composite hydrogel and form associates with sizes from 0.5 to 2 µm attached to PVP hydrogel pore walls. The PVP and TN/PVP hydrogels show a high degree of water swelling. Moreover, the presence of titania nanoparticles in TN/PVP increases the number of water adsorption cycles compared to PVP hydrogel. The high swelling degree, bacteria-resistant and antimicrobial properties against Staphylococcus aureus allow considering NT/PVP hydrogels for medical applications as wound coatings.



This study was financially supported by the Russian Foundation for Basic Research (Project No. 18-03-00330). We also acknowledge ILL for the beamtime allocation and the stuff of IN11 and D11 for the support on data analysis.

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this article.


  1. 1.
    Sen M, Guven O (1998) Prediction of swelling behavior of hydrogels containing diprotic acid moieties. Polymer 39:1165–1172Google Scholar
  2. 2.
    Nicodemus GD, Bryant SJ (2008) Cell encapsulation in biodegradable hydrogels for tissue engineering applications. Tissue EngPart B Rev 14:149–165Google Scholar
  3. 3.
    Hoffman AS (2002) Hydrogels for biomedical applications. Adv Drug Deliv Rev 54:3–12Google Scholar
  4. 4.
    Kamata H, Akagi Y, Kayasuga-Kariya Y, Chung U, Sakai T (2014) “Nonswellable” hydrogel without mechanical hysteresis. Science 343:873–875Google Scholar
  5. 5.
    Gaharwar AK, Peppas NA, Khademhosseini A (2014) Nanocomposite hydrogels for biomedical applications. Biotechnol Bioeng 111:441–453Google Scholar
  6. 6.
    Gupta B, Agarwal R, Alam MS (2011) 9-Hydrogels for wound healing applications, Biomed Hydrogels, p 184–227. Google Scholar
  7. 7.
    Rosiak JM, Rucinska R, Pekala W. U.S. Patent No. 4871490Google Scholar
  8. 8.
    Rogero SO, Malmonge SM, Lugao AB, Ikeda TI, Miyamaru L, Cruz AS (2003) Biocompatibility study of polymeric biomaterials. Artif Organs 27:424–427Google Scholar
  9. 9.
    Maher SA, Doty SB, Torzilli PA, Thornton S, Lowman AM, Thomas JD, Warren R, Wright TM (2007) Myers E (2007) Nondegradable hydrogels for the treatment of focal cartilage defects. J Biomed Mater Res 83:145–155Google Scholar
  10. 10.
    Zheng Y, Huang X, Wang Y, Xu H, Chen X (2009) Performance and characterization of irradiated poly(vinyl alcohol)/polyvinylpyrrolidone composite hydrogels used as cartilages replacement. J Appl Polym Sci 113:736–741Google Scholar
  11. 11.
    Kirsh YuE (1998) Water soluble poly-N-vinylamides. synthesis and physicochemical properties. Wiley, ChichesterGoogle Scholar
  12. 12.
    Jiao YP, Liu ZH, Ding S, Li LH, Zhou CR (2006) Preparation of biodegradable crosslinking agents and application in PVP hydrogel. J Appl Polym Sci 101:1515–1521Google Scholar
  13. 13.
    Benamer S, Mahlous M, Boukrif A, Mansouri B, Larbi YS (2006) Synthesis and characterisation of hydrogels based on poly(vinyl pyrrolidone). Nucl Instr Methods Phys Res B 248:284–290Google Scholar
  14. 14.
    Ajji Z, Othman I, Rosiak JM (2005) Production of hydrogel wound dressings using gamma radiation. Nucl Instrum Methods Phys Res B 229:375–380Google Scholar
  15. 15.
    Wang D, Hill DJT, Rasoul F, Whittaker AK (2011) A study of the swelling and model protein release behaviours of radiationformed poly(n-vinyl-2-pyrrolidone-co-acrylic acid) hydrogels. Radiat Phys Chem 80:207–212Google Scholar
  16. 16.
    Nho Y, Lim Y, An S, Kim Y (2008) Therapeutic hydrogel for atopic dermatitis and preparation method thereof. EP 1 889 608 B1Google Scholar
  17. 17.
    Darwis D, Hilmy N, Hardiningsih L, Erlinda T (1993) Poly(N-vinylpyrrolidone) hydrogels: 1. Radiation polymerization and crosslinking of N-vinylpyrrolidone. Radiat Phys Chem 42:907–910Google Scholar
  18. 18.
    Himly N, Darwis D, Hardiningsih L (1993) Poly(n-vinylpyrrolidone) hydrogels: 2. hydrogel composites as wound dressing for tropical environment. Radiat Phys Chem 4:911–914Google Scholar
  19. 19.
    Erdem A, Metzler D, Cha D, Huang CP (2015) Inhibition of bacteria by photocatalytic nano-TiO2 particles in the absence of light. Int J Environ Sci Technol 12:2987–2996Google Scholar
  20. 20.
    Huppman T, Yatsenko S, Leonhardt S, Krampe E, Radovanovic I, Bastian M, Wintermantel E (2014) Antimicrobial polymers—The antibacterial effect of photoactivated nano titanium dioxide polymer composites. AIP Conf Proc 1593:440–443Google Scholar
  21. 21.
    Bodaghi H, Mostofi Y, Oromiehie A, Zamani Z, Ghanbarzadeh B, Costa C, Conte A, Del Nobile MA (2013) Evaluation of the photocatalytic antimicrobial effects of a TiO2 nanocomposite food packaging film by in vitro and in vivo tests. LWT Food Sci Technol 50:702–706Google Scholar
  22. 22.
    Cao L, Wu X, Wang Q, Wang J (2018) Biocompatible nanocomposite of TiO2 incorporated bi-polymer for articular cartilage tissue regeneration: a facile material. J Photoch Photobio B 178:440–446Google Scholar
  23. 23.
    Archana D, Singh BK, Dutta J, Dutta PK (2013) In vivo evaluation of chitosan–PVP–titanium dioxide nanocomposite as wound dressing material. Carbohydr Polym 95:530–539Google Scholar
  24. 24.
    Kuz’micheva GM, Podbel’sky VV, Stepanov AN, Gaynanova AA (2017) Program for processing of diffraction patterns of nanosized and amorphous substances and calculation of the substructure. No. 2017610699Google Scholar
  25. 25.
    Korneev VN, Shlektarev VA, Zabelin AV, Aul’chenko VM, Tolochko BP, Ariskin NI, Lanina LF, Vazina AA (2012) X-ray stations based on cylindrical zoom lenses for nanostructural investigations using synchrotron radiation. J Surf Invest X-ray Synchrotron Neutron Tech 6:849–864Google Scholar
  26. 26.
    Huang TC, Toraya H, Blanton TN, Wu Y (1993) X-ray powder diffraction analysis of silver behenate, a possible low-angle diffraction standard. J Appl Cryst 26:180–184Google Scholar
  27. 27.
    Hammersley AP (1997) FIT2D: an introduction and overview. ESRF97HA02T, FranceGoogle Scholar
  28. 28.
    Konarev PV, Volkov VV, Sokolova AV, Koch MHJ, Svergun DI (2003) PRIMUS: a Windows PC-based system for small-angle scattering data analysis. J Appl Cryst 36:1277–1282Google Scholar
  29. 29.
    Konarev PV, Petoukhov MV, Volkov VV, Svergun DI (2006) ATSAS 2.1, a program package for small-angle scattering data analysis. J Appl Cryst 39:277–286Google Scholar
  30. 30.
    Svergun DI (1992) Determination of the regularization parameter in indirect-transform methods using perceptual criteria. J Appl Cryst 25:495–503Google Scholar
  31. 31.
    Svergun DI, Shtykova EV, Volkov VV, Feigin LA (2011) Small-angle X-ray scattering, synchrotron radiation, and the structure of bio- and nanosystems. Crystallogr Rep 56:725–750Google Scholar
  32. 32.
  33. 33.
    Richard D, Ferrand M, Kearley GJ (1996) Analysis and visualisation of neutron-scattering data. J Neutron Res 4:33–39Google Scholar
  34. 34.
    Brebler I, Kohlbrecher J, Thunemann AF (2015) SASfit: a tool for small-angle scattering data analysis using a library of analytical expressions. J Appl Cryst 48:1587–1598Google Scholar
  35. 35.
    Mezei F, Pappas C, Gutberlet T (2003) Neutron spin echo spectroscopy—basics, trends and applications. Springer, HeidelbergGoogle Scholar
  36. 36.
    Kim SH, Chu CC (2000) Pore structure analysis of swollen dextran-methacrylate hydrogels by SEM and mercury intrusion porosimetry. J Biomed Mater Res (Appl Biomater) 53:258–266Google Scholar
  37. 37.
    Teng J, Bates S, Engers D, Leach K, Schields P, Jang Y (2010) Effect of water vapor sorption on local structure of poly(vinylpyrrolidone). J Pharm Sci 99:3815–3825Google Scholar
  38. 38.
    Busselez R, Arbe A, Cerveny S, Capponi S, Colmenero J, Frick B (2012) Component dynamics in polyvinylpyrrolidone concentrated aqueous solutions. J Chem Phys 137:084902Google Scholar
  39. 39.
    Naohara R, Narita K, Ikeda-Fukazawa T (2017) Change in hydrogen bonding structures of a hydrogel with dehydration. Chem Phys Lett 670:84–88Google Scholar
  40. 40.
    Omidian H, Park K (2010) Introduction to hydrogels. In: Ottenbrite RM (ed) Biomedical applications of hydrogels handbook. Springer, London, pp 1–16Google Scholar
  41. 41.
    Zheng MP, Jin YP, Jin GL, My Gu (2000) Characterization of TiO2-PVP nanocomposites prepared by the sol–gel method. J Mater Sci 19:433–436. CrossRefGoogle Scholar
  42. 42.
    Hammouda B, Ho DL, Kline S (2004) Insight into clustering in poly (ethylene oxide) solutions. Macromolecules 37:6932–6937Google Scholar
  43. 43.
    Teodorescu M, Morariu S, Bercea M, Sacarescu L (2016) Viscoelastic and structural properties of poly(vinyl alcohol)/poly(vinylpyrrolidone) hydrogels. RSC Adv 6:39718–39727Google Scholar
  44. 44.
    Gennes PG (1979) Scaling Concepts in Polymer Physics. Cornell University Press, IthacaGoogle Scholar
  45. 45.
    Campanella A, Holderer O, Raftopoulos KN, Papadakis CM, Staropoli MP, Appavou MS, Muller-Buschbaum P, Frielinghaus H (2016) Multi-stage freezing of HEUR polymer networks with magnetite nanoparticles. Soft Matter 12:3214–3225Google Scholar
  46. 46.
    Berke B, Czakkel O, Porcar L, Geissler E, Laszlo K (2016) Static and dynamic behaviour of responsive graphene oxide–poly(N-isopropyl acrylamide) composite gels. Soft Matter 12:7166–7173Google Scholar
  47. 47.
    Hellweg T, Kratz K, Pouget S, Eimer W (2002) Internal dynamics in colloidal pNIPAM microgel particles immobilised in a mesoscopic crystal. Coll Surf A 202:223–232Google Scholar
  48. 48.
    Robinson GW, Zhu SB, Singh S, Evans MW (1996) Water in biology, chemistry, and physics: experimental overviews and computational methodologies. World Scientific, SingaporeGoogle Scholar
  49. 49.
    Adnadjevic B, Jovanovic J (2008) Novel approach in investigation of the poly(acrylic acid) hydrogel swelling kinetics in water. J Appl Polym Sci 107:3579–3587Google Scholar
  50. 50.
    Datsenko B, Biryukova SV, Tamm TI (1989) Methodical recommendations for experimental (preclinical) study of drugs for topical treatment of purulent wounds. USSR, MoscowGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.MIREA - Russian Technological UniversityMoscowRussian Federation
  2. 2.Shubnikov Institute of Crystallography of Federal Scientific Research Centre “Crystallography and Photonics”Russian Academy of SciencesMoscowRussian Federation
  3. 3.National Research Centre “Kurchatov Institute”MoscowRussian Federation
  4. 4.A.V. Vishnevsky Institute of SurgeryMinistry of Health of the Russian FederationMoscowRussian Federation
  5. 5.L.Ya. Karpov Research Institute of Physical ChemistryMoscowRussian Federation
  6. 6.Institut Laue-Langevin, CS 20156Grenoble Cedex 9France

Personalised recommendations