Advertisement

Fabrication of highly stable CdS/g-C3N4 composite for enhanced photocatalytic degradation of RhB and reduction of CO2

  • Xin Li
  • Miroslava Edelmannová
  • Pengwei HuoEmail author
  • Kamila KočíEmail author
Chemical routes to materials
  • 71 Downloads

Abstract

CdS/g-C3N4 (CdS/CN) type II heterojunction photocatalyst was prepared by an improved successive ionic layer adsorption and reaction process. TEM results show that the CdS nanoparticles (CdS NPs) were successfully loaded on the surface of CN. The results of PL and PEC display that the construction of CdS/CN heterojunction benefits the transmission of the photogenerated carriers and effectively inhibits the photogenerated carrier recombination in photocatalytic process. The photodegradation experiments exhibit that the 3-CdS/CN photocatalyst possesses the highest photodegradation performance over the other samples. The yields of H2 and CH4, in the presence of the best CdS/CN photocatalyst (1-CdS/CN) are 50 and 13 times stronger, respectively, than in the case of the pure CN in the photoreduction process of CO2. The CN coupling effectively improves the photocatalytic performance of CdS-based photocatalyst and inhibits the hole-induced photocorrosion of CdS NPs. A possible type II heterojunction photocatalytic mechanism has been provided.

Notes

Acknowledgements

The work was supported from the National Natural Science Foundation of China (Grant No. 21776117), ERDF “Institute of Environmental Technology—Excellent Research” (No. CZ.02.1.01/0.0/0.0/16_019/0000853) and by using Large Research Infrastructure ENREGAT supported by the Ministry of Education, Youth and Sports of the Czech Republic under Project No. LM2018098.

Supplementary material

10853_2019_4208_MOESM1_ESM.docx (542 kb)
Supplementary material 1 (DOCX 542 kb)

References

  1. 1.
    Mendiara T, García-Labiano F, Abad A, Gayán P, de Diego LF, Izquierdo MT, Adánez J (2018) Negative CO2 emissions through the use of biofuels in chemical looping technology: a review. Appl Energ 232:657–684CrossRefGoogle Scholar
  2. 2.
    Hasija V, Raizada P, Sudhaik A, Kirti Sharma K, Kumar A, Pardeep Singh P, Jonnalagadda S, Thakur V (2019) Recent advances in noble metal free doped graphitic carbon nitride based nanohybrids for photocatalysis of organic contaminants in water: a review. Appl Mater Today 15:494–524CrossRefGoogle Scholar
  3. 3.
    Manan ZA, Nawi-Mohd WNR, Alwi-Wan SR, Klemeš JJ (2017) Advances in process Integration research for CO2 emission reduction—a review. J Clean Prod 167:1–13CrossRefGoogle Scholar
  4. 4.
    Sharma S, Dutta V, Singh P, Raizada P, Sani A, Bandegharaei A, Thakur V (2019) Carbon quantum dot supported semiconductor photocatalysts for efficient degradation of organic pollutants in water: a review. J Clean Prod 228:755–769CrossRefGoogle Scholar
  5. 5.
    Zhang H, Wang T, Wang J, Liu H, Dao TD, Li M, Liu G, Meng X, Chang K, Shi L, Nagao T, Ye J (2016) Surface-plasmon-enhanced photodriven CO2 reduction catalyzed by metal-organic-framework-derived iron nanoparticles encapsulated by ultrathin carbon layers. Adv Mater 28:3703–3710CrossRefGoogle Scholar
  6. 6.
    Ravelli D, Dondi D, Fagnoni M, Albini A (2009) Photocatalysis A multi-faceted concept for green chemistry. Chem Soc Rev 38:1999–2011CrossRefGoogle Scholar
  7. 7.
    Li A, Wang T, Li C, Huang Z, Luo Z, Gong J (2019) adjusting the reduction potential of electrons by quantum confinement for selective photoreduction of CO2 to methanol. Angew Chem Int Ed Engl 58:3804–3808CrossRefGoogle Scholar
  8. 8.
    Xie X, Zhang N, Tang Z-R, Anpo M, Xu Y-J (2018) Ti3C2Tx MXene as a Janus cocatalyst for concurrent promoted photoactivity and inhibited photocorrosion. Appl Catal B-Environ 237:43–49CrossRefGoogle Scholar
  9. 9.
    Abe S, Joos JJ, Martin LI, Hens Z, Smet PF (2017) Hybrid remote quantum dot/powder phosphor designs for display backlights. Light Sci Appl 6:e16271CrossRefGoogle Scholar
  10. 10.
    Accanto N, de Roque PM, Sosa-Galvan M, Christodoulou S, Moreels I, van Hulst NF (2017) Rapid and robust control of single quantum dots. Light Sci Appl 6:e16239CrossRefGoogle Scholar
  11. 11.
    Low J, Dai B, Tong T, Jiang C, Yu J (2019) In situ irradiated X-ray photoelectron spectroscopy investigation on a direct Z-scheme TiO2/CdS composite film photocatalyst. Adv Mater 31:e1802981CrossRefGoogle Scholar
  12. 12.
    Wang X, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson J, Domen K, Antonietti M (2009) A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat Mater 8:76–80CrossRefGoogle Scholar
  13. 13.
    Li G, Wang B, Zhang J, Wang R, Liu H (2019) Rational construction of a direct Z-scheme g-C3N4/CdS photocatalyst with enhanced visible light photocatalytic activity and degradation of erythromycin and tetracycline. Appl Surf Sci 478:1056–1064CrossRefGoogle Scholar
  14. 14.
    Zhang C, Lu Y, Jiang Q, Hu J (2016) Synthesis of CdS hollow spheres coupled with g-C3N4 as efficient visible-light-driven photocatalysts. Nanotechnology 27:355402CrossRefGoogle Scholar
  15. 15.
    Prakash K, Kumar JV, Latha P, Kumar PS, Karuthapandian S (2019) Fruitful fabrication of CDs on GO/g-C3N4 sheets layers: a carbon amalgamation for the remediation of carcinogenic pollutants. J Photochem Photobiol, A 370:94–104CrossRefGoogle Scholar
  16. 16.
    Ji C, Du C, Steinkruger JD, Zhou C, Yang S (2019) In-situ hydrothermal fabrication of CdS/g-C3N4 nanocomposites for enhanced photocatalytic water splitting. Mater Lett 240:128–131CrossRefGoogle Scholar
  17. 17.
    Zhang L, Huang F, Liang C, Zhou L, Zhang X, Pang Q (2016) Ultrasound exfoliation of g-C3N4 with assistance of cadmium ions and synthesis of CdS/g-C3N4 ultrathin nanosheets with efficient photocatalytic activity. J Taiwan Inst Chem E 60:643–650CrossRefGoogle Scholar
  18. 18.
    Che HN, Liu LH, Che GB, Dong HJ, Liu CB, Li CM (2019) Control of energy band, layer structure and vacancy defect of graphitic carbon nitride by intercalated hydrogen bond effect of NO3 toward improving photocatalytic performance. Chem Eng J 357:209–219CrossRefGoogle Scholar
  19. 19.
    Che HN, Liu CB, Hu W, Hu H, Li JQ, Dou JY, Shi WD, Li CM, Dong HJ (2018) NGQD active sites as effective collectors of charge carriers for improving the photocatalytic performance of Z-scheme g-C3N4/Bi2WO6 heterojunctions. Catal Sci Technol 8:622–631CrossRefGoogle Scholar
  20. 20.
    Yang J, Wang J, Li X, Wang D, Song H (2016) Synthesis of urchin-like Fe3O4@SiO2@ZnO/CdS core–shell microspheres for the repeated photocatalytic degradation of rhodamine B under visible light. Catal Sci Technol 6:4525–4534CrossRefGoogle Scholar
  21. 21.
    Zhang J, Zhang Q, Wang L, Li XA, Huang W (2016) Interface induce growth of intermediate layer for bandgap engineering insights into photoelectrochemical water splitting. Sci Rep 6:27241CrossRefGoogle Scholar
  22. 22.
    Qu D, Zheng M, Li J, Xie Z, Sun Z (2015) Tailoring color emissions from N-doped graphene quantum dots for bioimaging applications. Light Sci Appl 4:364–e364CrossRefGoogle Scholar
  23. 23.
    Sun L, Liu C, Li J, Zhou Y, Wang H, Huo P, Ma C, Yan Y (2019) Fast electron transfer and enhanced visible light photocatalytic activity by using poly-o-phenylenediamine modified AgCl/g-C3N4 nanosheets. Chin J Catal 40:80–94CrossRefGoogle Scholar
  24. 24.
    Chang F, Xie Y, Li C, Chen J, Luo J, Hu X, Shen J (2013) A facile modification of g-C3N4 with enhanced photocatalytic activity for degradation of methylene blue. Appl Surf Sci 280:967–974CrossRefGoogle Scholar
  25. 25.
    Luo YD, Deng BA, Pu Y, Liu AN, Wang JM, Ma KL, Gao F, Gao B, Zou WX, Dong L (2019) Interfacial coupling effects in g-C3N4/SrTiO3 nanocomposites with enhanced H-2 evolution under visible light irradiation. Appl Catal B-Environ 247:1–9CrossRefGoogle Scholar
  26. 26.
    Wei F, Liu Y, Zhao H, Ren X, Liu J, Hasan T, Chen L, Li Y, Su B-L (2018) Oxygen self-doped g-C3N4 with tunable electronic band structure for unprecedentedly enhanced photocatalytic performance. Nanoscale 10:4515–4522CrossRefGoogle Scholar
  27. 27.
    Jiang L, Yuan X, Zeng G, Liang J, Chen X, Yu H, Wang H, Wu Z, Zhang J, Xiong T (2018) In-situ synthesis of direct solid-state dual Z-scheme WO3/g-C3N4/Bi2O3 photocatalyst for the degradation of refractory pollutant. Appl Catal B-Environ 227:376–385CrossRefGoogle Scholar
  28. 28.
    Che HN, Che GB, Jiang EH, Liu CB, Dong HJ, Li CM (2018) A novel Z-Scheme CdS/Bi3O4Cl heterostructure for photocatalytic degradation of antibiotics: mineralization activity, degradation pathways and mechanism insight. J Taiwan Inst Chem E 91:224–234CrossRefGoogle Scholar
  29. 29.
    Lutsyk P, Arif R, Hruby J, Bukivskyi A, Vinijchuk O, Shandura M, Yakubovskyi V, Kovtun Y, Rance GA, Fay M, Piryatinski Y, Kachkovsky O, Verbitsky A, Rozhin A (2016) A sensing mechanism for the detection of carbon nanotubes using selective photoluminescent probes based on ionic complexes with organic dyes. Light Sci Appl 5:e16028CrossRefGoogle Scholar
  30. 30.
    Zhao YY, Wang YB, Liang XH, Shi HX, Wang CJ, Fan J, Hu XY, Liu EZ (2019) Enhanced photocatalytic activity of Ag-CsPbBr 3/CN composite for broad spectrum photocatalytic degradation of cephalosporin antibiotics 7-ACA. Appl Catal B-Environ 247:57–69CrossRefGoogle Scholar
  31. 31.
    Jabeen U, Adhikari T, Pathak D, Shah SM, Nunzi JM (2018) Structural, optical and photovoltaic properties of P3HT and Mn-doped CdS quantum dots based bulk heterojunction hybrid layers. Opt Mater 78:132–141CrossRefGoogle Scholar
  32. 32.
    Li W, Feng C, Dai S, Yue J, Hua F, Hou H (2015) Fabrication of sulfur-doped g-C3N4/Au/CdS Z-scheme photocatalyst to improve the photocatalytic performance under visible light. Appl Catal B-Environ 168–169:465–471CrossRefGoogle Scholar
  33. 33.
    Li J, Liu K, Xue J, Xue G, Sheng X, Wang H, Huo P, Yan Y (2019) CQDS preluded carbon-incorporated 3D burger-like hybrid ZnO enhanced visible-light-driven photocatalytic activity and mechanism implication. J Catal 369:450–461CrossRefGoogle Scholar
  34. 34.
    Ding J, Long G, Luo Y, Sun R, Chen M, Li Y, Zhou Y, Xu X, Zhao W (2018) Photocatalytic reductive dechlorination of 2-chlorodibenzo-p-dioxin by Pd modified g-C3N4 photocatalysts under UV–Vis irradiation: efficacy, kinetics and mechanism. J Hazard Mater 355:74CrossRefGoogle Scholar
  35. 35.
    Liu C, Li J, Sun L, Zhou Y, Liu C, Wang H, Huo P, Ma C, Yan Y (2018) Visible-light driven photocatalyst of CdTe/CdS homologous heterojunction on N-rGO photocatalyst for efficient degradation of 2,4-dichlorophenol. J Taiwan Inst Chem E 93:603–615CrossRefGoogle Scholar
  36. 36.
    Li B, Meng M, Cui Y, Wu Y, Zhang Y, Dong H, Zhu Z, Feng Y, Wu C (2019) Changing conventional blending photocatalytic membranes (BPMs): focus on improving photocatalytic performance of Fe3O4/g-C3N4/PVDF membranes through magnetically induced freezing casting method. Chem Eng J 365:405–414CrossRefGoogle Scholar
  37. 37.
    Li X, Li X, Zhu B, Wang J, Lan H, Chen X (2017) Synthesis of porous ZnS, ZnO and ZnS/ZnO nanosheets and their photocatalytic properties. RSC Adv 7:30956–30962CrossRefGoogle Scholar
  38. 38.
    Che H, Che G, Dong H, Hu W, Hu H, Liu C, Li C (2018) Fabrication of Z-scheme Bi3O4Cl/g-C3N4 2D/2D heterojunctions with enhanced interfacial charge separation and photocatalytic degradation various organic pollutants activity. Appl Surf Sci 455:705–716CrossRefGoogle Scholar
  39. 39.
    Li J, Ma Y, Ye Z, Zhou M, Wang H, Ma C, Wang D, Huo P, Yan Y (2017) Fast electron transfer and enhanced visible light photocatalytic activity using multi-dimensional components of carbon quantum dots@3D daisy-like In2S3/single-wall carbon nanotubes. Appl Catal B-Environ 204:224–238CrossRefGoogle Scholar
  40. 40.
    Zhang XY, Sun SH, Sun XJ, Zhao YR, Chen L, Yang Y, Lu W, Li DB (2016) Plasma-induced, nitrogen-doped graphene-based aerogels for high-performance supercapacitors. Light Sci Appl 5:e16130CrossRefGoogle Scholar
  41. 41.
    Wu D, Li J, Guan J, Liu C, Zhao X, Zhu Z, Ma C, Huo P, Li C, Yan Y (2018) Improved photoelectric performance via fabricated heterojunction g-C3N4/TiO2/HNTs loaded photocatalysts for photodegradation of ciprofloxacin. J Ind Eng Chem 64:206–218CrossRefGoogle Scholar
  42. 42.
    Zhou Y, Li J, Liu C, Huo P, Wang H (2018) Construction of 3D porous g-C3N4/AgBr/rGO composite for excellent visible light photocatalytic activity. Appl Surf Sci 458:586–596CrossRefGoogle Scholar
  43. 43.
    Cakmakyapan S, Lu PK, Navabi A, Jarrahi M (2018) Gold-patched graphene nano-stripes for high-responsivity and ultrafast photodetection from the visible to infrared regime. Light Sci Appl 7:20CrossRefGoogle Scholar
  44. 44.
    Ma XC, Dai Y, Yu L, Huang BB (2016) Energy transfer in plasmonic photocatalytic composites. Light Sci Appl 5:e16017CrossRefGoogle Scholar
  45. 45.
    Lang P, Hong XW, Wang X, Zhe X, Shi CY, Zou Z (2018) Nanostructured TaON/Ta3N5 as highly efficient type-II heterojunction photoanode for photoelectrochemical water splitting. Dalton Trans 47:8949–8955CrossRefGoogle Scholar
  46. 46.
    Bhoi YP, Mishra BG (2018) Photocatalytic degradation of alachlor using Type-II CuS/BiFeO3 heterojunctions as novel photocatalyst under visible light irradiation. Chem Eng J 344:391–401CrossRefGoogle Scholar
  47. 47.
    Li FT, Wang Q, Ran J, Hao YJ, Wang XJ, Zhao D, Qiao SZ (2015) Ionic liquid self-combustion synthesis of BiOBr/Bi24O31Br 10 heterojunctions with exceptional visible-light photocatalytic performances. Nanoscale 7:1116CrossRefGoogle Scholar
  48. 48.
    Hirakawa T, Nosaka Y (2002) Properties of O-2(center dot-) and OH center dot formed in TiO2 aqueous suspensions by photocatalytic reaction and the influence of H2O2 and some ions. Langmuir 18:3247–3254CrossRefGoogle Scholar
  49. 49.
    Wang D, Han D, Shi Z, Wang J, Yang J, Li X, Song H (2018) Optimized design of three-dimensional multi-shell Fe3O4/SiO2/ZnO/ZnSe microspheres with type II heterostructure for photocatalytic applications. Appl Catal B-Environ 227:61–69CrossRefGoogle Scholar
  50. 50.
    Ouldhamadouche N, Achour A, Porto-Lucio R, Islam M, Solaymani S, Arman A, Ahmadpourian A, Achour H, Le Brizoual L, Djouadi MA, Brousse T (2018) Electrodes based on nano-tree-like vanadium nitride and carbon nanotubes for micro-supercapacitors. J Mater Sci Technol 34:976–982CrossRefGoogle Scholar
  51. 51.
    Xie SJ, Wang Y, Zhang QH, Deng WP, Wang Y (2014) MgO- and Pt-promoted TiO2 as an efficient photocatalyst for the preferential reduction of carbon dioxide in the presence of water. ACS Catal 4:3644–3653CrossRefGoogle Scholar
  52. 52.
    Li H, Gao Y, Xiong Z, Liao C, Shih K (2018) Enhanced selective photocatalytic reduction of CO2 to CH4 over plasmonic Au modified g-C3N4 photocatalyst under UV–vis light irradiation. Appl Surf Sci 439:552–559CrossRefGoogle Scholar
  53. 53.
    Zhu Z, Lu Z, Wang D, Tang X, Yan Y, Shi W, Wang Y, Gao N, Yao X, Dong H (2016) Construction of high-dispersed Ag/Fe3O4/g-C3N4 photocatalyst by selective photo-deposition and improved photocatalytic activity. Appl Catal B-Environ 182:115–122CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Chemistry and Chemical EngineeringJiangsu UniversityZhenjiangChina
  2. 2.Institute of Environmental TechnologyVŠB-Technical University of OstravaOstrava-PorubaCzech Republic
  3. 3.Faculty of Materials Science and TechnologyVŠB-Technical University of OstravaOstrava-PorubaCzech Republic

Personalised recommendations