Highly scattered Ir oxides on TiN as an efficient oxygen evolution reaction electrocatalyst in acidic media

  • Kaikai Zhang
  • Wanshan Mai
  • Jin Li
  • Huan Wang
  • Guoqiang Li
  • Wei HuEmail author
Energy materials


Here, a support-type composite catalyst TiN/IrO2 with an outstanding catalytic activity for OER in acid electrolyte was prepared by a colloidal method. It was found the ultra-fine IrO2 nanoclusters (1.41 ± 0.19 nm) scattered on the TiN support like strawberry seeds, which not only provided the higher active surface area, but also exposed much more surface unsaturated Ir atoms with the higher reactive activity compared to saturated iridium atoms. And the mesoporous structure and high surface area inherited from the TiN carrier were also maintained in the composite. Benefit from these characteristics, the as-prepared TiN/IrO2 with IrO2 loading of 31 wt% possessed a mass-normalized OER activity of 874.0 A g−1(IrO2) at the potential of 1.6 V that was about 5.0 times of the unsupported IrO2 (176.0 A g−1IrO2).



This work was supported by the National Natural Science Foundation of China (NSFC No. 21606075).


  1. 1.
    Sun W, Zhou Z, Zaman WQ, Cao L, Yang J (2017) Rational manipulation of IrO2 lattice strain on α-MnO2 nanorods as a highly efficient water-splitting catalyst. ACS Appl Mater Interfaces 9(48):41855–41862CrossRefGoogle Scholar
  2. 2.
    Tariq M, Zaman WQ, Sun W, Zhou Z, Wu Y, Cao L, Yang J (2018) Unraveling the beneficial electrochemistry of IrO2/MoO3 hybrid as a highly stable and efficient oxygen evolution reaction catalyst. ACS Sustain Chem Eng 6(4):4854–4862CrossRefGoogle Scholar
  3. 3.
    Tackett BM, Sheng W, Kattel S, Yao S, Yan B, Kuttiyiel KA, Chen JG (2018) Reducing iridium loading in oxygen evolution reaction electrocatalysts using core-shell particles with nitride cores. ACS Catal 8(3):2615–2621CrossRefGoogle Scholar
  4. 4.
    Reier T, Nong HN, Teschner D, Schlögl R, Strasser P (2017) Electrocatalytic oxygen evolution reaction in acidic environments—reaction mechanisms and catalysts. Adv Energy Mater 7(1):1601275CrossRefGoogle Scholar
  5. 5.
    Hu W, Wang Y, Hu X, Zhou Y, Chen S (2012) Three-dimensional ordered macroporous IrO2 as electrocatalyst for oxygen evolution reaction in acidic medium. J Mater Chem 22(13):6010–6016CrossRefGoogle Scholar
  6. 6.
    Reier T, Oezaslan M, Strasser P (2012) Electrocatalytic oxygen evolution reaction (OER) on Ru, Ir, and pt catalysts: a comparative study of nanoparticles and bulk materials. ACS Catal 2(8):1765–1772CrossRefGoogle Scholar
  7. 7.
    Xu J, Aili D, Li Q, Christensen E, Jensen JO, Zhang W, Bjerrum NJ (2014) Oxygen evolution catalysts on supports with a 3-D ordered array structure and intrinsic proton conductivity for proton exchange membrane steam electrolysis. Energy Environ Sci 7(2):820–830CrossRefGoogle Scholar
  8. 8.
    Hu W, Chen S, Xia Q (2014) IrO2/Nb-TiO2 electrocatalyst for oxygen evolution reaction in acidic medium. Int J Hydrogen Energy 39(13):6967–6976CrossRefGoogle Scholar
  9. 9.
    Tong J, Liu Y, Peng Q, Hu W, Wu Q (2017) An efficient Sb-SnO2-supported IrO2 electrocatalyst for the oxygen evolution reaction in acidic medium. J Mater Sci 52(23):13427–13443. Doi: CrossRefGoogle Scholar
  10. 10.
    Zhao S, Stocks A, Rasimick B, More K, Xu H (2018) Highly active, durable dispersed iridium nanocatalysts for PEM water electrolyzers. J Electrochem Soc 165(2):F82–F89CrossRefGoogle Scholar
  11. 11.
    Oh HS, Nong HN, Strasser P (2015) Preparation of mesoporous Sb-, F-, and In-doped SnO2 bulk powder with high surface area for use as catalyst supports in electrolytic cells. Adv Funct Mater 25(7):1074–1081CrossRefGoogle Scholar
  12. 12.
    Huang K, Li Y, Yan L, Xing Y (2014) Nanoscale conductive niobium oxides made through low temperature phase transformation for electrocatalyst support. RSC Adv 4(19):9701–9708CrossRefGoogle Scholar
  13. 13.
    Oh H-S, Nong HN, Reier T, Gliech M, Strasser P (2015) Oxide-supported Ir nanodendrites with high activity and durability for the oxygen evolution reaction in acid PEM water electrolyzers. Chem Sci 6(6):3321–3328CrossRefGoogle Scholar
  14. 14.
    Karimi F, Peppley BA (2017) Metal carbide and oxide supports for iridium-based oxygen evolution reaction electrocatalysts for polymer-electrolyte-membrane water electrolysis. Electrochim Acta 246:654–670CrossRefGoogle Scholar
  15. 15.
    Kuttiyiel KA, Sasaki K, Chen W, Su D, Adzic RR (2014) Core–shell, hollow-structured iridium–nickel nitride nanoparticles for the hydrogen evolution reaction. J Mater Chem A 2(3):591–594CrossRefGoogle Scholar
  16. 16.
    Rudenja S, Pan J, Wallinder IO, Leygraf C, Kulu P (1999) Passivation and anodic oxidation of duplex TiN coating on stainless steel. J Electrochem Soc 146(11):4082–4086CrossRefGoogle Scholar
  17. 17.
    Kakinuma K, Wakasugi Y, Uchida M, Kamino T, Uchida H, Watanabe M (2011) Electrochemical activity and durability of platinum catalysts supported on nanometer-size titanium nitride particles for polymer electrolyte fuel cells. Electrochemistry 79(5):399–403CrossRefGoogle Scholar
  18. 18.
    Yang S, Tak YJ, Kim J, Soon A, Lee H (2017) Support effect in single-atom platinum catalyst for electrochemical oxygen reduction support effect in single-atom platinum catalyst for electrochemical oxygen reduction. ACS Catal 7(2):1301–1307CrossRefGoogle Scholar
  19. 19.
    Zheng Y, Zhang J, Zhan H, Sun D, Dang D, Tian XL (2018) Porous and three dimensional titanium nitride supported platinum as an electrocatalyst for oxygen reduction reaction. Electrochem Commun 91:31–35CrossRefGoogle Scholar
  20. 20.
    Yang S, Kim J, Tak YJ, Soon A, Lee H (2016) Single-atom catalyst of platinum supported on titanium nitride for selective electrochemical reactions. Angew Chem Int Ed 55(6):2058–2062CrossRefGoogle Scholar
  21. 21.
    Li G, Li K, Yang L, Chang J, Ma R, Wu Z, Xing W (2018) Boosted performance of Ir species by employing TiN as the support toward oxygen evolution reaction. ACS Appl Mater Interfaces 10(44):38117–38124CrossRefGoogle Scholar
  22. 22.
    Cheng J, Zhang H, Ma H, Zhong H, Zou Y (2009) Preparation of Ir0.4Ru0.6MoxOy for oxygen evolution by modified Adams’ fusion method. Int J Hydrogen Energy 34(16):6609–6661CrossRefGoogle Scholar
  23. 23.
    Ioroi T, Kitazawa N, Yasuda K, Yamamoto Y, Takenaka H (2000) Iridium oxide/platinum electrocatalysts for unitized regenerative polymer electrolyte fuel cells. J Electrochem Soc 147(6):2018–2022CrossRefGoogle Scholar
  24. 24.
    Ioroi T, Kitazawa N, Yasuda K, Yamamoto Y, Takenaka H (2001) IrO2-deposited Pt electrocatalysts for unitized regenerative polymer electrolyte fuel cells. J Appl Electrochem 31(11):1179–1183CrossRefGoogle Scholar
  25. 25.
    Dong Y, Wu Y, Liu M, Li J (2013) Electrocatalysis on shape-controlled titanium nitride nanocrystals for the oxygen reduction reaction. ChemSusChem 6(10):2016–2021CrossRefGoogle Scholar
  26. 26.
    Wei Z, Wang Y, Zhang J (2018) Electrochemical detection of NGF using a reduced graphene oxide-titanium nitride nanocomposite. Sci Rep 8(1):6929CrossRefGoogle Scholar
  27. 27.
    Li C, Shi J, Zhu L, Zhao Y, Lu J, Xu L (2018) Titanium nitride hollow nanospheres with strong lithium polysulfide chemisorption as sulfur hosts for advanced lithium-sulfur batteries. Nano Res 11(8):4302–4312CrossRefGoogle Scholar
  28. 28.
    Liao Y, Xiang J, Yuan L, Hao Z, Gu J, Chen X, Huang Y (2018) Biomimetic root-like TiN/C@S nanofiber as a freestanding cathode with high sulfur loading for lithium-sulfur batteries. ACS Appl Mater Interfaces 10(44):37955–37962CrossRefGoogle Scholar
  29. 29.
    Yang C, Wang H, Lu S, Wu C, Liu Y, Tan Q, Xiang Y (2015) Titanium nitride as an electrocatalyst for V(II)/V(III) redox couples in all-vanadium redox flow batteries. Electrochim Acta 182:834–840CrossRefGoogle Scholar
  30. 30.
    Oktay S, Kahraman Z, Urgen M, Kazmanli K (2015) XPS investigations of tribolayers formed on TiN and (Ti, Re)N coatings. Appl Surf Sci 328:255–261CrossRefGoogle Scholar
  31. 31.
    Cui Z, Zu C, Zhou W, Manthiram A, Goodenough JB (2016) Mesoporous titanium nitride-enabled highly stable lithium-sulfur batteries. Adv Mater 28(32):6926–6931CrossRefGoogle Scholar
  32. 32.
    Zhao D, Cui Z, Wang S, Qin J, Cao M (2016) VN hollow spheres assembled from porous nanosheets for high-performance lithium storage and the oxygen reduction reaction. J Mater Chem A 4(20):7914–7923CrossRefGoogle Scholar
  33. 33.
    Pfeifer V, Jones TE, Velasco Vélez JJ, Massué C, Arrigo R, Teschner D, Hashagen M (2016) The electronic structure of iridium and its oxides. Surf Interface Anal 48(5):261–273CrossRefGoogle Scholar
  34. 34.
    Xiao H, Jia C, Liu B, Huang Y, Cai W, Li J, Huang Y (2019) Breaking long-range order in iridium oxide by alkali ion for efficient water oxidation. J Am Chem Soc 141(7):3014–3023CrossRefGoogle Scholar
  35. 35.
    Pfeifer V, Jones TE, Velasco Vélez JJ, Arrigo R, Piccinin S, Hävecker M, Schlögl R (2017) In situ observation of reactive oxygen species forming on oxygen-evolving iridium surfaces. Chem Sci 8(3):2143–2149CrossRefGoogle Scholar
  36. 36.
    Lee WH, Kim H (2011) Oxidized iridium nanodendrites as catalysts for oxygen evolution reactions. Catal Commun 12(6):408–411CrossRefGoogle Scholar
  37. 37.
    Kuo D-Y, Kawasaki JK, Nelson JN, Kloppenburg J, Hautier G, Shen KM, Suntivich J (2017) Influence of surface adsorption on the oxygen evolution reaction on IrO2(110). J Am Chem Soc 139(9):3473–3479CrossRefGoogle Scholar
  38. 38.
    Mustain WE, Capuano CB, Maric R, Ayers KE, Zhao S, Danilovic N, Mustain WE (2015) Calculating the electrochemically active surface area of iridium oxide in operating proton exchange membrane electrolyzers. J Electrochem Soc 162(12):F1292–F1298CrossRefGoogle Scholar
  39. 39.
    Lettenmeier P, Wang L, Golla-Schindler U, Gazdzicki P, Cañas NA, Handl M, Friedrich KA (2016) Nanosized IrOx-Ir catalyst with relevant activity for anodes of proton exchange membrane electrolysis produced by a cost-effective procedure. Angew Chem Int Ed 55(2):742–746CrossRefGoogle Scholar
  40. 40.
    Hao C, Lv H, Mi C, Song Y, Ma J (2016) Investigation of mesoporous niobium-doped TiO2 as an oxygen evolution catalyst support in an SPE water electrolyzer. ACS Sustain Chem Eng 4(3):746–756CrossRefGoogle Scholar
  41. 41.
    Han B, Risch M, Belden S, Lee S, Bayer D, Mutoro E, Yang SH (2018) Screening oxide support materials for OER catalysts in acid. J Electrochem Soc 165(10):F813–F820CrossRefGoogle Scholar
  42. 42.
    Rai S, Ikram A, Sahai S, Dass S, Shrivastav R, Satsangi VR (2017) CNT based photoelectrodes for PEC generation of hydrogen: a review. Int J Hydrogen Energy 42(7):3994–4006CrossRefGoogle Scholar
  43. 43.
    Guan J, Li D, Si R, Miao S, Zhang F, Li C (2017) Synthesis and demonstration of subnanometric iridium oxide as highly efficient and robust water oxidation catalyst. ACS Catal 7(9):5983–5986CrossRefGoogle Scholar
  44. 44.
    Zhou X, Yang J, Li C (2012) Theoretical study of structure, stability, and the hydrolysis reactions of small iridium oxide nanoclusters. J Phys Chem A 116(40):9985–9995CrossRefGoogle Scholar
  45. 45.
    Ping Y, Nielsen RJ, Goddard WA (2017) The reaction mechanism with free energy barriers at constant potentials for the oxygen evolution reaction at the IrO2(110) surface. J Am Chem Soc 139(1):149–155CrossRefGoogle Scholar
  46. 46.
    Fuentes RE, Colon-Mercado HR, Martinez-Rodriguez MJ (2013) Pt-Ir/TiC electrocatalysts for PEM fuel cell/electrolyzer process. J Electrochem Soc 161(1):F77–F82CrossRefGoogle Scholar
  47. 47.
    Godínez-Salomón F, Albiter L, Alia SM, Pivovar BS, Camacho-Forero LE, Balbuena PB, Rhodes CP (2018) Self-supported hydrous iridium–nickel oxide two-dimensional nanoframes for high activity oxygen evolution electrocatalysts. ACS Catal 8(11):10498–10520CrossRefGoogle Scholar
  48. 48.
    Fu L, Zeng X, Cheng G, Luo W (2018) IrCo nanodendrite as an efficient bifunctional electrocatalyst for overall water splitting under acidic conditions. ACS Appl Mater Interfaces 10(30):24993–24998CrossRefGoogle Scholar
  49. 49.
    Jiang B, Wang T, Cheng Y, Liao F, Wu K, Shao M (2018) Ir/g-C3N4/nitrogen-doped graphene nanocomposites as bifunctional electrocatalysts for overall water splitting in acidic electrolytes. ACS Appl Mater Interfaces 10(45):39161–39167CrossRefGoogle Scholar
  50. 50.
    Nong HN, Oh HS, Reier T, Willinger E, Willinger MG, Petkov V, Strasser P (2015) Oxide-supported IrNiOx core-shell particles as efficient, cost-effective, and stable catalysts for electrochemical water splitting. Angew Chem Int Ed 54(10):297–2979CrossRefGoogle Scholar
  51. 51.
    Liang X, Shi L, Liu Y, Chen H, Si R, Yan W, Zou X (2019) Activating inert, nonprecious perovskites with iridium dopants for efficient oxygen evolution reaction under acidic conditions. Angew Chem Int Ed 58(23):7631–7635CrossRefGoogle Scholar
  52. 52.
    Frydendal R, Paoli EA, Knudsen BP, Wickman B, Malacrida P, Stephens IEL, Chorkendorff I (2014) Benchmarking the stability of oxygen evolution reaction catalysts: the importance of monitoring mass losses. ChemElectroChem 1:2075–2081CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Applications of Organic Functional MoleculesHubei UniversityWuhanChina

Personalised recommendations