Advertisement

Journal of Materials Science

, Volume 55, Issue 5, pp 2077–2089 | Cite as

Phosphonium-based ionic liquid as crosslinker/dispersing agent for epoxy/carbon nanotube nanocomposites: electrical and dynamic mechanical properties

  • Danielle F. Santos
  • Anna Paula A. Carvalho
  • Bluma G. SoaresEmail author
Composites & nanocomposites
  • 88 Downloads

Abstract

Phosphonium-based ionic liquid (IL), tributyl(ethyl)-phosphonium diethylphosphate, was investigated as the curing agent for the preparation of nanocomposites involving multi-walled carbon nanotube (CNT) and epoxy resin (ER). Different mixing procedures were employed in order to attain better filler dispersion within the epoxy matrix. The dispersion effectiveness was evaluated by rheological behavior and transmission electron microscopy. Also the electrical conductivity and dynamic mechanical properties were investigated as a function of the mixing procedure. The AC electrical conductivity stayed in the range of 0.10–0.5 S m−1 with the addition of 1 phr of CNT. The non-covalent functionalization of CNT with the IL by previously milling the CNT with IL in a mortar resulted in better reinforcing effect and higher conductivity. Thus, the use of high shear speed mixer combined with acetone was considered the best mixing conditions. At these conditions, composites with high electrical conductivity and better dynamic mechanical properties were obtained. The effect of the amounts of CNT on the main properties of the ER-based nanocomposites was also investigated for systems cured with different amounts of IL. Both systems displayed low electrical percolation (1.6 × 10−4 and 4.7 × 10−4 volume fraction for systems cured with 10 or 30 phr of IL, respectively). Lower amount of IL resulted in outstanding dynamic mechanical properties, as well as better thermal stability.

Notes

Acknowledgements

This work was sponsored by Conselho Nacional de Desenvolvimento Científico e Tecnológico—CNPq (Grant Number 303457/2013-9)—and Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro—FAPERJ (Grant Number E-26/201.183/2014). The authors are in debt with Daniel G. L. Vieira from CENABIO and Prof. A.A. Silva (EQ/UFRJ) for the assistance on the sample preparation for TEM.

References

  1. 1.
    Marouf BT, Mai YW, Bagheri R, Pearson RA (2016) Toughening of epoxy nanocomposites: nano and hybrid effects. Polym Rev 56:70–112CrossRefGoogle Scholar
  2. 2.
    Li Y, Huang X, Zeng L, Li L, Tian H, Fu X, Wang Y, Zhong WH (2019) A review of the electrical and mechanical properties of carbon nanofiller-reinforced polymer composites. J Mater Sci 54:1036–1076.  https://doi.org/10.1007/s10853-018-3006-9 CrossRefGoogle Scholar
  3. 3.
    Kotsilkova R, Ivanov E, Bychanok D, Paddubskaya A, Demidenko M, Macutkevic J, Maksimenko S, Kuzhir P (2015) Effects of sonochemical modification of carbon nanotubes on the electrical and electromagnetic shielding properties of epoxy composites. Compos Sci Technol 106:85–92CrossRefGoogle Scholar
  4. 4.
    Suave J, Coelho LAF, Amico SA, Pezzin SH (2009) Effect of sonication on thermo-mechnical properties of epoxy nanocomposites with carboxylated-SWNT. Mater Sci Eng A 509:57–62CrossRefGoogle Scholar
  5. 5.
    Hosur M, Barua R, Zainuddin S, Kumar A, Trovillion J, Jeelani S (2013) Effect of processing techniques on the performance of epoxy/MWCNT nanocomposites. J Appl Polym Sci 127:4211–4224CrossRefGoogle Scholar
  6. 6.
    Pizzutto CE, Suave J, Bertholdi J, Pezzin SH, Coelho LAF, Amico SC (2011) Study of epoxy/CNT nanocomposites prepared via dispersion in the hardener. Mater Res 14:256–263CrossRefGoogle Scholar
  7. 7.
    Olowojoba G, Sathyanarayana S, Caglar B, Kiss-Pataki B, Mikonsaari I, Hübner C, Elsner P (2013) Influence of process parameters on the morphology, rheological and dielectric properties of three-roll-milled multiwalled carbon nanotube/epoxy suspensions. Polymer 54:188–198CrossRefGoogle Scholar
  8. 8.
    Chang L, Friedrich K, Ye L, Toro P (2009) Evaluation and visualization of the percolating networks in multi-wall carbon nanotube/epoxy composites. J Mater Sci 44:4003–4012.  https://doi.org/10.1007/s10853-009-3551-3 CrossRefGoogle Scholar
  9. 9.
    Fukushima T, Kosaka A, Ishimura Y, Yamamoto T, Takigawa T, Ihii N, Aida T (2003) Molecular ordering of organic molten salts triggered by single-walled carbon nanotubes. Science 300:2072–2074CrossRefGoogle Scholar
  10. 10.
    Guryanov I, Toma FM, Lopez AM, Carraro M, Ros TD, Angelini G, D’Aurizio E, Fontana A, Maggini M, Prato M, Bonchiio M (2009) Microwave-assisted functionalization of carbon nanostructures in ionic liquids. Chem Eur J 15:12837–12845CrossRefGoogle Scholar
  11. 11.
    Zhang S, Zhang Y, Zhang J, Chen Y, Li X, Shi J, Guo Z (2006) Dispersion of modified carbon nanotubes in 1-butyl-3-methyl-imidazolium tetrafluoroborate. J Mater Sci 41:3123–3126.  https://doi.org/10.1007/s10853-006-5229-4 CrossRefGoogle Scholar
  12. 12.
    Wang Z, Colorad HA, Guo ZH, Kim H, Park CL, Hahn HT, Lee SG, Lee KH, Shang YQ (2012) Effective functionalization of carbon nanotubes for bisphenol F epoxy matrix composites. Mater Res 15:510–516CrossRefGoogle Scholar
  13. 13.
    Pereira ECL, Soares BG (2016) Conducting epoxy networks modified with non-covalently functionalized multi-walled carbon nanotube with imidazolium-based ionic liquid. J Appl Polym Sci 133:43976CrossRefGoogle Scholar
  14. 14.
    Sanes J, Saurín N, Carrión FJ, Ojados G, Bermúdez MD (2016) Synergy between single-walled carbon nanotubes and ionic liquid in epoxy resin nanocomposites. Compos Part B 105:149–159CrossRefGoogle Scholar
  15. 15.
    Soares BG, Alves FF (2018) Nanostructured epoxy-rubber network modified with MWCNT and ionic liquid: electrical, dynamic-mechanical and adhesion properties. Polym Compos 39:E2584–E2594CrossRefGoogle Scholar
  16. 16.
    Alves FF, Silva AA, Soares BG (2018) Epoxy-MWCNT composites prepared from master batch and powder dilution: effect of ionic liquid on dispersion and multifunctional properties. Polym Eng Sci 58:1689–1697CrossRefGoogle Scholar
  17. 17.
    Soares BG (2018) Ionic liquid: a smart approach for developing conducting polymer composites. J Mol Liq 262:8–18CrossRefGoogle Scholar
  18. 18.
    Kowalczyk K, Spychaj T (2003) Ionic liquids as convenient latent of epoxy resins. Polimery 48:833–835CrossRefGoogle Scholar
  19. 19.
    Maka H, Spychaj T, Pilawka R (2012) Epoxy resin/ionic liquid systems: the influence of imidazolium cation size and anion type on reactivity and thermomechanical properties. Ind Eng Chem Res 51:5197–5206CrossRefGoogle Scholar
  20. 20.
    Soares BG, Livi S, Duchet-Rumeau J, Gérard J-F (2011) Synthesis and characterization of epoxy/MCDEA networks modified with imidazolium- based ionic liquids. Macromol Mater Eng 296:826–834CrossRefGoogle Scholar
  21. 21.
    Rahmathullah MAM, Jeyarajasingam A, Merritt B, Van Landingham M, McKnight SH, Palmese GR (2009) Room temperature ionic liquids as thermally latent initiators for polymerization of epoxy resins. Macromolecules 42:3219–3221CrossRefGoogle Scholar
  22. 22.
    Arnold U, Altesleben C, Behrens S, Essig S, Lautenschütz L, Schild D, Sauer J (2015) Ionic liquid-initiated polymerization of epoxides: a useful strategy for the preparation of Pd-doped polyether catalysts. Catal Today 246:116–124CrossRefGoogle Scholar
  23. 23.
    Binks FC, Cavalli G, Henningsen M, Howlin BJ, Hamerton I (2018) Investigating the mechanism through which ionic liquids initiate the polymerization of epoxy resins. Polymer 139:163–176CrossRefGoogle Scholar
  24. 24.
    Binks FC, Cavalli G, Henningsen M, Howlin BJ, Hamerton I (2018) Examining the effects of storage on the initiation behavior of ionic liquids towards the cure of epoxy resins. React Funct Polym 133:9–20CrossRefGoogle Scholar
  25. 25.
    Silva AA, Livi S, Netto DB, Soares BG, Duchet J, Gérard J-F (2013) New epoxy systems based on ionic liquid. Polymer 54:2123–2129CrossRefGoogle Scholar
  26. 26.
    Livi S, Silva AA, Thimont Y, Nguyen TKL, Soares BG, Gerard J-F, Duchet-Rumeau J (2014) Nanostructured thermosets from ionic liquid building block-epoxy prepolymer mixtures. RSC Adv 4:28099–28106CrossRefGoogle Scholar
  27. 27.
    Nguyen TKL, Livi S, Soares BG, Pruvost S, Duchet-Rumeau J, Gerard J-F (2016) Ionic liquids: a new route for the design of epoxy networks. ACS Sustain Chem Eng 4:481–490CrossRefGoogle Scholar
  28. 28.
    Nguyen TKL, Livi S, Soares BG, Pruvost S, Soares BG, Duchet-Rumeau J (2014) Ionic liquids as reactive additives for the preparation and modification of epoxy networks. J Polym Sci Part A Polym Chem 52:3463–3471Google Scholar
  29. 29.
    Hameed N, Salim NV, Hanley TL, Sona M, Fox BL, Guo Q (2013) Individual dispersion of carbon nanotubes in epoxy via a novel dispersion–curing approach using ionic liquids. Phys Chem Chem Phys 15:11696–11703CrossRefGoogle Scholar
  30. 30.
    Throckmorton JA, Watters AL, Geng X, Palmese GR (2013) Room temperature ionic liquids for epoxy nanocomposite synthesis: direct dispersion and cure. Compos Sci Technol 86:38–44CrossRefGoogle Scholar
  31. 31.
    Maka H, Spychaj T, Pilawka R (2014) Epoxy resin/phosphonium ionic liquid/carbon nanofiller systems: chemorheology and properties. Express Polym Lett 8:723–732CrossRefGoogle Scholar
  32. 32.
    Maka H, Spychaj T, Zenker M (2015) High performance epoxy composites cured with ionic liquids. J Ind Eng Chem 31:192–198CrossRefGoogle Scholar
  33. 33.
    Soares BG, Riany N, Silva AA, Barra GMO, Livi S (2016) Dual-role of phosphonium-based ionic liquid in epoxy/MWCNT systems: electric, rheological behavior and electromagnetic interference shielding effectiveness. Eur Polym J 84:77–88CrossRefGoogle Scholar
  34. 34.
    Sumfleth J, Buschhorn ST, Schulte K (2011) Comparison of rheological and electrical percolation phenomena in carbon black and carbon nanotube filled epoxy polymers. J Mater Sci 46:659–669.  https://doi.org/10.1007/s10853-010-4788-6 CrossRefGoogle Scholar
  35. 35.
    Ivanov E, Kotsilkova R, Krusteva E, Logakis E, Kyritsis A, Pissis P, Silvestre C, Duraccio D, Pezzuto M (2011) Effects of processing conditions on rheological, thermal, and electrical properties of multiwall carbon nanotube/epoxy resin composites. J Polym Sci Part B Polym Phys 49:431–442CrossRefGoogle Scholar
  36. 36.
    Kim SH, Lee WI, Park JM (2009) Assessment of dispersion in carbon nanotube reinforced composites using differential scanning calorimetry. Carbon 47:2699–2703CrossRefGoogle Scholar
  37. 37.
    Gao C, Zhang S, Wang F, Wen B, Han C, Ding Y, Yang M (2014) Graphene networks with low percolation threshold in ABS nanocomposites: selective localization and electrical and rheological properties. ACS Appl Mater Interfaces 6:12252–12260CrossRefGoogle Scholar
  38. 38.
    Li N, Huang Y, Du F, He X, Lin X, Gao H, Ma Y, Li F, Chen Y, Eklund PC (2006) Electromagnetic interference (EMI) shielding of single-walled carbon nanotube epoxy composites. Nano Lett 6:1141–1145CrossRefGoogle Scholar
  39. 39.
    Han S, Meng Q, Pan X, Liu T, Zhang S, Wang Y, Haridy S, Araby S (2019) Synergistic effect of graphene and carbon nanotube on lap shear strength and electrical conductivity of epoxy adhesives. J Appl Polym Sci 136:48056CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.PEMM-COPPE, Centro de TecnologiaUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
  2. 2.Instituto de MacromoléculasUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations