Advertisement

Journal of Materials Science

, Volume 55, Issue 7, pp 2645–2660 | Cite as

Current progress and research trends on lithium amidoborane for hydrogen storage

  • Xiaoran Liu
  • Yuanfang Wu
  • Shumao WangEmail author
  • Zhinian Li
  • Xiumei Guo
  • Jianhua Ye
  • Lijun Jiang
Review

Abstract

The research on safe and efficient hydrogen storage methods is the key scientific and technological issue which restricts the implementation of hydrogen economy. Lithium amidoborane (LiNH2BH3) has received extensive attention for its excellent hydrogen storage properties. It can desorb 10.9 wt% of hydrogen below 100 °C without deleterious by-product such as borazine. What is more, it is chemically stable at room-temperature conditions. The preparation methods and crystal structure of LiNH2BH3 were reviewed at length in this paper, and its dehydrogenation performance and mechanisms were analyzed combined with the theoretical calculation results. Moreover, the barriers and improvement measures in hydrogen release thermodynamics/kinetics and regeneration of the spent fuel were summarized. It is proposed that reducing the synthesis cost, decreasing dehydrogenation temperature with increased rates, and exploring high-efficiency, low-energy consumption, and low-cost regeneration techniques are the critical striving directions of lithium amidoborane. To the best of our knowledge, this work is the first review focusing on LiNH2BH3, one of the most promising materials for onboard hydrogen storage application, which is expected to give clues for the next advance of LiNH2BH3.

Notes

Acknowledgements

The authors would like to acknowledge the financial support from the National Key Research and Development Program (2018YFB1502103) under Ministry of Science and Technology of the People’s Republic of China.

Compliance with ethical standards

Conflict of interest

The authors declare no competing financial interest.

References

  1. 1.
    Uyar TS, Beşikci D (2017) Integration of hydrogen energy systems into renewable energy systems for better design of 100% renewable energy communities. Int J Hydrog Energy 42(4):2453–2456.  https://doi.org/10.1016/j.ijhydene.2016.09.086 CrossRefGoogle Scholar
  2. 2.
    Wei TY, Lim KL, Tseng YS, Chan SLI (2017) A review on the characterization of hydrogen in hydrogen storage materials. Renew Sustain Energy Rev 79:1122–1133.  https://doi.org/10.1016/j.rser.2017.05.132 CrossRefGoogle Scholar
  3. 3.
    Rusman NAA, Dahari M (2016) A review on the current progress of metal hydrides material for solid-state hydrogen storage applications. Int J Hydrog Energy 41(28):12108–12126.  https://doi.org/10.1016/j.ijhydene.2016.05.244 CrossRefGoogle Scholar
  4. 4.
    He T, Pachfule P, Wu H, Xu Q, Chen P (2016) Hydrogen carriers. Nat Rev Mater 1:16059.  https://doi.org/10.1038/natrevmats.2016.59 CrossRefGoogle Scholar
  5. 5.
  6. 6.
    Lai Q, Paskevicius M, Sheppard DA, Buckley CE, Thornton AW, Hill MR, Gu Q, Mao J, Huang Z, Liu HK, Guo Z, Banerjee A, Chakraborty S, Ahuja R, Aguey-Zinsou K-F (2015) Hydrogen storage materials for mobile and stationary applications: current state of the art. ChemSusChem 8(17):2789–2825.  https://doi.org/10.1002/cssc.201500231 CrossRefGoogle Scholar
  7. 7.
    Barthelemy H, Weber M, Barbier F (2017) Hydrogen storage: recent improvements and industrial perspectives. Int J Hydrog Energy 42(11):7254–7262.  https://doi.org/10.1016/j.ijhydene.2016.03.178 CrossRefGoogle Scholar
  8. 8.
    Broom DP (2011) Hydrogen storage materials: the characterisation of their storage properties. Springer, Berlin.  https://doi.org/10.1007/978-0-85729-221-6 CrossRefGoogle Scholar
  9. 9.
    David WIF (2011) Effective hydrogen storage: a strategic chemistry challenge. Faraday Discuss 151:399–414.  https://doi.org/10.1039/C1FD00105A CrossRefGoogle Scholar
  10. 10.
    Hirose K (2010) Handbook of hydrogen storage: new materials for future energy storage. Wiley, New YorkGoogle Scholar
  11. 11.
    Jepsen LH, Ley MB, Lee Y-S, Cho YW, Dornheim M, Jensen JO, Filinchuk Y, Jørgensen JE, Besenbacher F, Jensen TR (2014) Boron–nitrogen based hydrides and reactive composites for hydrogen storage. Mater Today 17(3):129–135.  https://doi.org/10.1016/j.mattod.2014.02.015 CrossRefGoogle Scholar
  12. 12.
    Umegaki T, Yan J-M, Zhang X-B, Shioyama H, Kuriyama N, Xu Q (2009) Boron- and nitrogen-based chemical hydrogen storage materials. Int J Hydrog Energy 34(5):2303–2311.  https://doi.org/10.1016/j.ijhydene.2009.01.002 CrossRefGoogle Scholar
  13. 13.
    Smythe NC, Gordon JC (2010) Ammonia borane as a hydrogen carrier: dehydrogenation and regeneration. Eur J Inorg Chem 2010(4):509–521.  https://doi.org/10.1002/ejic.200900932 CrossRefGoogle Scholar
  14. 14.
    Miranda CR, Ceder G (2007) Ab initio investigation of ammonia–borane complexes for hydrogen storage. J Chem Phys 126(18):184703.  https://doi.org/10.1063/1.2730785 CrossRefGoogle Scholar
  15. 15.
    Sit V, Geanangel RA, Wendlandt WW (1987) The thermal dissociation of NH3BH3. Thermochim Acta 113:379–382.  https://doi.org/10.1016/0040-6031(87)88340-5 CrossRefGoogle Scholar
  16. 16.
    Baitalow F, Baumann J, Wolf G, Jaenicke-Rößler K, Leitner G (2002) Thermal decomposition of B–N–H compounds investigated by using combined thermoanalytical methods. Thermochim Acta 391(1):159–168.  https://doi.org/10.1016/S0040-6031(02)00173-9 CrossRefGoogle Scholar
  17. 17.
    Akbayrak S, Özkar S (2018) Ammonia borane as hydrogen storage materials. Int J Hydrog Energy 43(40):18592–18606.  https://doi.org/10.1016/j.ijhydene.2018.02.190 CrossRefGoogle Scholar
  18. 18.
    Demirci UB (2017) Ammonia borane, a material with exceptional properties for chemical hydrogen storage. Int J Hydrog Energy 42(15):9978–10013.  https://doi.org/10.1016/j.ijhydene.2017.01.154 CrossRefGoogle Scholar
  19. 19.
    Staubitz A, Robertson APM, Manners I (2010) Ammonia–borane and related compounds as dihydrogen sources. Chem Rev 110(7):4079–4124.  https://doi.org/10.1021/cr100088b CrossRefGoogle Scholar
  20. 20.
    Valero-Pedraza M-J, Cot D, Petit E, Aguey-Zinsou K-F, Alauzun JG, Demirci UB (2019) Ammonia borane nanospheres for hydrogen storage. ACS Appl Nano Mater 2(2):1129–1138.  https://doi.org/10.1021/acsanm.9b00176 CrossRefGoogle Scholar
  21. 21.
    Feaver A, Sepehri S, Shamberger P, Stowe A, Autrey T, Cao G (2007) Coherent carbon cryogel-ammonia borane nanocomposites for H2 storage. J Phys Chem B 111(26):7469–7472.  https://doi.org/10.1021/jp072448t CrossRefGoogle Scholar
  22. 22.
    Bruma A, Salameh C, Moussa G, Bernard S (2018) Robust 3D boron nitride nanoscaffolds with interconnected mesoporous networks, high surface areas and pore volumes for remarkable hydrogen storage capacity from ammonia borane (conference presentation), vol 10725. SPIE nanoscience + engineering, SPIEGoogle Scholar
  23. 23.
    Gutowska A, Li L, Shin Y, Wang CM, Li XS, Linehan JC, Smith RS, Kay BD, Schmid B, Shaw W, Gutowski M, Autrey T (2005) Nanoscaffold mediates hydrogen release and the reactivity of ammonia borane. Angew Chem Int Ed 44(23):3578–3582.  https://doi.org/10.1002/anie.200462602 CrossRefGoogle Scholar
  24. 24.
    Zhan W-W, Zhu Q-L, Xu Q (2016) Dehydrogenation of ammonia borane by metal nanoparticle catalysts. ACS Catal 6(10):6892–6905.  https://doi.org/10.1021/acscatal.6b02209 CrossRefGoogle Scholar
  25. 25.
    Yang Y-W, Feng G, Lu Z-H, Hu N, Zhang F, Chen X-S (2014) In situ synthesis of reduced graphene oxide supported Co nanoparticles as efficient catalysts for hydrogen generation from NH3BH3. Acta Phys Chim Sin 30(6):1180–1186.  https://doi.org/10.3866/PKU.WHXB201404141 CrossRefGoogle Scholar
  26. 26.
    Chen J, Hu M, Ming M, Xu C, Wang Y, Zhang Y, Wu J, Gao D, Bi J, Fan G (2018) Carbon-supported small Rh nanoparticles prepared with sodium citrate: toward high catalytic activity for hydrogen evolution from ammonia borane hydrolysis. Int J Hydrog Energy 43(5):2718–2725.  https://doi.org/10.1016/j.ijhydene.2017.12.079 CrossRefGoogle Scholar
  27. 27.
    Nakagawa Y, Zhang T, Kitamura M, Isobe S, Hino S, Hashimoto N, Ohnuki S (2016) A systematic study of the effects of metal chloride additives on H2 desorption properties of ammonia borane. J Chem Eng Data 61(5):1924–1929.  https://doi.org/10.1021/acs.jced.6b00143 CrossRefGoogle Scholar
  28. 28.
    Luo J, Wu H, Zhou W, Kang X, Fang Z, Wang P (2012) LiBH4·NH3BH3: a new lithium borohydride ammonia borane compound with a novel structure and favorable hydrogen storage properties. Int J Hydrog Energy 37(14):10750–10757.  https://doi.org/10.1016/j.ijhydene.2012.04.049 CrossRefGoogle Scholar
  29. 29.
    Dovgaliuk I, Le Duff CS, Robeyns K, Devillers M, Filinchuk Y (2015) Mild dehydrogenation of ammonia borane complexed with aluminum borohydride. Chem Mater 27(3):768–777.  https://doi.org/10.1021/cm503601h CrossRefGoogle Scholar
  30. 30.
    Nakagawa Y, Ikarashi Y, Isobe S, Hino S, Ohnuki S (2014) Ammonia borane–metal alanate composites: hydrogen desorption properties and decomposition processes. RSC Adv 4(40):20626–20631.  https://doi.org/10.1039/C4RA02476A CrossRefGoogle Scholar
  31. 31.
    Bluhm ME, Bradley MG, Butterick R, Kusari U, Sneddon LG (2006) Amineborane-based chemical hydrogen storage: enhanced ammonia borane dehydrogenation in ionic liquids. J Am Chem Soc 128(24):7748–7749.  https://doi.org/10.1021/ja062085v CrossRefGoogle Scholar
  32. 32.
    Stephens FH, Baker RT, Matus MH, Grant DJ, Dixon DA (2007) Acid initiation of ammonia–borane dehydrogenation for hydrogen storage. Angew Chem Int Ed 46(5):746–749.  https://doi.org/10.1002/anie.200603285 CrossRefGoogle Scholar
  33. 33.
    Wang K, Zhang J-G, Man T-T, Wu M, Chen C-C (2013) Recent process and development of metal aminoborane. Chem Asian J 8(6):1076–1089.  https://doi.org/10.1002/asia.201201241 CrossRefGoogle Scholar
  34. 34.
    Wu H, Zhou W, Yildirim T (2008) Alkali and alkaline-earth metal amidoboranes: structure, crystal chemistry, and hydrogen storage properties. J Am Chem Soc 130(44):14834–14839.  https://doi.org/10.1021/ja806243f CrossRefGoogle Scholar
  35. 35.
    Chua YS, Chen P, Wu G, Xiong Z (2011) Development of amidoboranes for hydrogen storage. Chem Commun 47(18):5116–5129.  https://doi.org/10.1039/C0CC05511E CrossRefGoogle Scholar
  36. 36.
    Chernysheva AM, Shelyganov PA, Kazakov IV, Timoshkin AY (2017) Complex amidoboranes M2[M1(NH2BH3)4] (M1 = Al, Ga; M2 = Li, Na, K, Rb, Cs). Russ J Gen Chem 87(4):665–669.  https://doi.org/10.1134/s1070363217040016 CrossRefGoogle Scholar
  37. 37.
    Zhang Y, Wolverton C (2012) Crystal structures, phase stabilities, and hydrogen storage properties of metal amidoboranes. J Phys Chem C 116(27):14224–14231.  https://doi.org/10.1021/jp303315u CrossRefGoogle Scholar
  38. 38.
    Owarzany R, Leszczyński P, Fijalkowski K, Grochala WJC (2016) Mono-and bimetalic amidoboranes. Crystals 6(8):88.  https://doi.org/10.3390/cryst6080088 CrossRefGoogle Scholar
  39. 39.
    Ramzan M, Silvearv F, Blomqvist A, Scheicher RH, Lebègue S, Ahuja R (2009) Structural and energetic analysis of the hydrogen storage materials LiNH2BH3 and NaNH2BH3 from ab initio calculations. Phys Rev B 79(13):132102.  https://doi.org/10.1103/PhysRevB.79.132102 CrossRefGoogle Scholar
  40. 40.
    Xu W, Fan H, Wu G, Chen P (2012) Comparative study on reducing aromatic aldehydes by using ammonia borane and lithium amidoborane as reducing reagents. New J Chem 36(7):1496–1501.  https://doi.org/10.1039/C2NJ40227K CrossRefGoogle Scholar
  41. 41.
    Wang Y, Guo ZX (2014) Enhanced hydrogen desorption of an ammonia borane and lithium hydride system through synthesised intermediate compounds. J Mater Chem A 2(19):6801–6813.  https://doi.org/10.1039/C3TA14295G CrossRefGoogle Scholar
  42. 42.
    Xiong Z, Yong CK, Wu G, Chen P, Shaw W, Karkamkar A, Autrey T, Jones MO, Johnson SR, Edwards PP, David WIF (2007) High-capacity hydrogen storage in lithium and sodium amidoboranes. Nat Mater 7:138–143.  https://doi.org/10.1038/nmat2081 CrossRefGoogle Scholar
  43. 43.
    Myers AG, Yang BH, David KJ (1996) Lithium amidotrihydroborate, a powerful new reductant. Transformation of tertiary amides to primary alcohols. Tetrahedron Lett 37(21):3623–3626.  https://doi.org/10.1016/0040-4039(96)00652-1 CrossRefGoogle Scholar
  44. 44.
    Chen X-M, Li H, Yang Q-Y, Wang R-R, Hamilton EJM, Zhang J, Chen X (2017) Brønsted and Lewis base behavior of sodium amidotrihydridoborate (NaNH2BH3). Eur J Inorg Chem 2017(38–39):4541–4545.  https://doi.org/10.1002/ejic.201700556 CrossRefGoogle Scholar
  45. 45.
    James SL, Adams CJ, Bolm C, Braga D, Collier P, Friščić T, Grepioni F, Harris KDM, Hyett G, Jones W, Krebs A, Mack J, Maini L, Orpen AG, Parkin IP, Shearouse WC, Steed JW, Waddell DC (2012) Mechanochemistry: opportunities for new and cleaner synthesis. Chem Soc Rev 41(1):413–447.  https://doi.org/10.1039/C1CS15171A CrossRefGoogle Scholar
  46. 46.
    Suryanarayana C (2001) Mechanical alloying and milling. Prog Mater Sci 46(1):1–184.  https://doi.org/10.1016/S0079-6425(99)00010-9 CrossRefGoogle Scholar
  47. 47.
    Kang X, Fang Z, Kong L, Cheng H, Yao X, Lu G, Wang P (2008) Ammonia borane destabilized by lithium hydride: an advanced on-board hydrogen storage material. Adv Mater 20(14):2756–2759.  https://doi.org/10.1002/adma.200702958 CrossRefGoogle Scholar
  48. 48.
    Rojac T, Šegedin P, Kosec M (2012) Using infrared spectroscopy to identify new amorphous phases - a case study of carbonato complex formed by mechanochemical processing. In: Theophanides T (ed) Materials science, engineering and technology.  https://doi.org/10.5772/2055 CrossRefGoogle Scholar
  49. 49.
    Xiong Z, Chua YS, Wu G, Xu W, Chen P, Shaw W, Karkamkar A, Linehan J, Smurthwaite T, Autrey T (2008) Interaction of lithium hydride and ammonia borane in THF. Chem Commun 43:5595–5597.  https://doi.org/10.1039/B812576G CrossRefGoogle Scholar
  50. 50.
    Balema V, Josyula K, Xu G, Wallock N, Batcheller S, Gao P, Jasty S (2012) Metal amidoborane compositions and processes for their preparation. United States Patent US20120301382Google Scholar
  51. 51.
    Xiong Z, Chua Y, Wu G, Wang L, Wong MW, Kam ZM, Autrey T, Kemmitt T, Chen P (2010) Interaction of ammonia borane with Li2NH and Li3N. Dalton Trans 39(3):720–722.  https://doi.org/10.1039/B916994F CrossRefGoogle Scholar
  52. 52.
    Wang X, Andrews L (2007) Infrared spectra and theoretical calculations of lithium hydride clusters in solid hydrogen, neon, and argon. J Phys Chem A 111(27):6008–6019.  https://doi.org/10.1021/jp071251y CrossRefGoogle Scholar
  53. 53.
    Lee TB, McKee ML (2009) Mechanistic study of LiNH2BH3 formation from (LiH)4 + NH3BH3 and subsequent dehydrogenation. Inorg Chem 48(16):7564–7575.  https://doi.org/10.1021/ic9001835 CrossRefGoogle Scholar
  54. 54.
    Kim DY, Singh NJ, Lee HM, Kim KS (2009) Hydrogen-release mechanisms in lithium amidoboranes. Chem Eur J 15(22):5598–5604.  https://doi.org/10.1002/chem.200900092 CrossRefGoogle Scholar
  55. 55.
    Chengzhang W, Guotao W, Zhitao X, David WIF, Ryan KR, Jones MO, Edwards PP, Hailiang C, Ping C (2010) Stepwise phase transition in the formation of lithium amidoborane. Inorg Chem 49(9):4319–4323.  https://doi.org/10.1021/ic100308j CrossRefGoogle Scholar
  56. 56.
    Ryan KR (2011) A study of ammonia borane and its derivatives. University of Oxford, OxfordGoogle Scholar
  57. 57.
    Ryan KR, Ramirez-Cuesta AJ, Refson K, Jones MO, Edwards PP, David WIF (2011) A combined experimental inelastic neutron scattering, Raman and ab initio lattice dynamics study of α-lithium amidoborane. Phys Chem Chem Phys 13(26):12249–12253.  https://doi.org/10.1039/C1CP20587K CrossRefGoogle Scholar
  58. 58.
    Najiba S, Chen J (2012) High-pressure study of lithium amidoborane using Raman spectroscopy and insight into dihydrogen bonding absence. Proc Natl Acad Sci 109(47):19140–19144.  https://doi.org/10.1073/pnas.1211369109 CrossRefGoogle Scholar
  59. 59.
    Shimoda K, Doi K, Nakagawa T, Zhang Y, Miyaoka H, Ichikawa T, Tansho M, Shimizu T, Burrell AK, Kojima Y (2012) Comparative study of structural changes in NH3BH3, LiNH2BH3, and KNH2BH3 during dehydrogenation process. J Phys Chem C 116(9):5957–5964.  https://doi.org/10.1021/jp212351f CrossRefGoogle Scholar
  60. 60.
    Bowden ME, Gainsford GJ, Robinson WT (2007) Room-temperature structure of ammonia borane. Aust J Chem 60(3):149–153.  https://doi.org/10.1071/CH06442 CrossRefGoogle Scholar
  61. 61.
    Swinnen S, Nguyen VS, Nguyen MT (2011) Theoretical study of the hydrogen release mechanism from a lithium derivative of ammonia borane, LiNH2BH3–NH3BH3. Chem Phys Lett 517(1):22–28.  https://doi.org/10.1016/j.cplett.2011.10.010 CrossRefGoogle Scholar
  62. 62.
    Shevlin SA, Kerkeni B, Guo ZX (2011) Dehydrogenation mechanisms and thermodynamics of MNH2BH3 (M = Li, Na) metal amidoboranes as predicted from first principles. Phys Chem Chem Phys 13(17):7649–7659.  https://doi.org/10.1039/C0CP02213F CrossRefGoogle Scholar
  63. 63.
    Wang K, Zhang J-G, Yang W, Wu M, Man T-T, Zhang T-L, Zhang S-W (2013) Systematic kinetic study of H2 release from the dimer of lithium amidoborane (LiNH2BH3)2. Struct Chem 24(5):1527–1536.  https://doi.org/10.1007/s11224-012-0182-0 CrossRefGoogle Scholar
  64. 64.
    Fijalkowski KJ, Jurczakowski R, Koźmiński W, Grochala W (2012) Insights from impedance spectroscopy into the mechanism of thermal decomposition of M(NH2BH3), M = H, Li, Na, Li0.5Na0.5, hydrogen stores. Phys Chem Chem Phys 14(16):5778–5784.  https://doi.org/10.1039/C2CP23344D CrossRefGoogle Scholar
  65. 65.
    Wolstenholme DJ, Titah JT, Che FN, Traboulsee KT, Flogeras J, McGrady GS (2011) Homopolar dihydrogen bonding in alkali-metal amidoboranes and its implications for hydrogen storage. J Am Chem Soc 133(41):16598–16604.  https://doi.org/10.1021/ja206357a CrossRefGoogle Scholar
  66. 66.
    Zhang Y, Autrey T, Wolverton C (2012) First-principles prediction of intermediate products in the decomposition of metal amidoboranes. J Phys Chem C 116(51):26728–26734.  https://doi.org/10.1021/jp3106293 CrossRefGoogle Scholar
  67. 67.
    Yang Z, Wang Y, Liang J, Chen J (2011) Hydrogen releasing of lithium amidoborane-LiNH2BH3. Mater Trans 52(4):651–653.  https://doi.org/10.2320/matertrans.MA201015 CrossRefGoogle Scholar
  68. 68.
    Swinnen S, Nguyen VS, Nguyen MT (2010) Potential hydrogen storage of lithium amidoboranes and derivatives. Chem Phys Lett 489(4–6):148–153.  https://doi.org/10.1016/j.cplett.2010.02.060 CrossRefGoogle Scholar
  69. 69.
    Luedtke AT, Autrey T (2010) Hydrogen release studies of alkali metal amidoboranes. Inorg Chem 49(8):3905–3910.  https://doi.org/10.1021/ic100119m CrossRefGoogle Scholar
  70. 70.
    Kim DY, Lee HM, Seo J, Shin SK, Kim KS (2010) Rules and trends of metal cation driven hydride-transfer mechanisms in metal amidoboranes. Phys Chem Chem Phys 12(20):5446–5453.  https://doi.org/10.1039/B925235E CrossRefGoogle Scholar
  71. 71.
    Pomogaeva AV, Morokuma K, Timoshkin AY (2016) Mechanisms of hydrogen generation from tetrameric clusters of lithium amidoborane. J Phys Chem A 120(1):145–152.  https://doi.org/10.1021/acs.jpca.5b09924 CrossRefGoogle Scholar
  72. 72.
    Pomogaeva AV, Morokuma K, Timoshkin AY (2016) Trimeric cluster of lithium amidoborane—the smallest unit for the modeling of hydrogen release mechanism. J Comput Chem 37(14):1259–1264.  https://doi.org/10.1002/jcc.24316 CrossRefGoogle Scholar
  73. 73.
    Züttel A, Wenger P, Rentsch S, Sudan P, Mauron P, Emmenegger C (2003) LiBH4 a new hydrogen storage material. J Power Sour 118(1):1–7.  https://doi.org/10.1016/S0378-7753(03)00054-5 CrossRefGoogle Scholar
  74. 74.
    Bösenberg U, Doppiu S, Mosegaard L, Barkhordarian G, Eigen N, Borgschulte A, Jensen TR, Cerenius Y, Gutfleisch O, Klassen T, Dornheim M, Bormann R (2007) Hydrogen sorption properties of MgH2–LiBH4 composites. Acta Mater 55(11):3951–3958.  https://doi.org/10.1016/j.actamat.2007.03.010 CrossRefGoogle Scholar
  75. 75.
    Chen J, He T, Wu G, Xiong Z, Chen P (2013) Synthesis and hydrogen storage properties of lithium borohydride amidoborane complex. Int J Hydrog Energy 38(25):10944–10949.  https://doi.org/10.1016/j.ijhydene.2013.01.094 CrossRefGoogle Scholar
  76. 76.
    Luo J, Wu H, Zhou W, Kang X, Wang P (2013) Li2(NH2BH3)(BH4)/LiNH2BH3: the first metal amidoborane borohydride complex with inseparable amidoborane precursor for hydrogen storage. Int J Hydrog Energy 38(1):197–204.  https://doi.org/10.1016/j.ijhydene.2012.10.055 CrossRefGoogle Scholar
  77. 77.
    Ghaani MR, Catti M (2018) Dehydrogenation properties of the LiNH2BH3/MgH2 and LiNH2BH3/LiBH4 bi-component hydride systems for hydrogen storage applications. Mater Renew Sustain Energy 7(4):26.  https://doi.org/10.1007/s40243-018-0133-9 CrossRefGoogle Scholar
  78. 78.
    Wu C, Wu G, Xiong Z, Han X, Chu H, He T, Chen P (2010) LiNH2BH3·NH3BH3: structure and hydrogen storage properties. Chem Mater 22(1):3–5.  https://doi.org/10.1021/cm903167b CrossRefGoogle Scholar
  79. 79.
    Li W, Scheicher RH, Araújo CM, Wu G, Blomqvist A, Wu C, Ahuja R, Feng YP, Chen P (2010) Understanding from first-principles why LiNH2BH3·NH3BH3 shows improved dehydrogenation over LiNH2BH3 and NH3BH3. J Phys Chem C 114(44):19089–19095.  https://doi.org/10.1021/jp103708z CrossRefGoogle Scholar
  80. 80.
    Xia G, Yu X, Guo Y, Wu Z, Yang C, Liu H, Dou S (2010) Amminelithium amidoborane Li(NH3)NH2BH3: a new coordination compound with favorable dehydrogenation characteristics. Chem Eur J 16(12):3763–3769.  https://doi.org/10.1002/chem.200903220 CrossRefGoogle Scholar
  81. 81.
    Bhattacharya S, Xiong Z, Wu G, Chen P, Feng YP, Majumder C, Das G (2012) Dehydrogenation mechanism of monoammoniated lithium amidoborane [Li(NH3)NH2BH3]. J Phys Chem C 116:8859–8864.  https://doi.org/10.1021/jp210315u CrossRefGoogle Scholar
  82. 82.
    Graham KR, Kemmitt T, Bowden ME (2009) High capacity hydrogen storage in a hybrid ammonia borane–lithium amide material. Energy Environ Sci 2(6):706–710.  https://doi.org/10.1039/B901082C CrossRefGoogle Scholar
  83. 83.
    de Jongh PE, Adelhelm P (2010) Nanosizing and nanoconfinement: new strategies towards meeting hydrogen storage goals. ChemSusChem 3(12):1332–1348.  https://doi.org/10.1002/cssc.201000248 CrossRefGoogle Scholar
  84. 84.
    Li F, Gao J, Zhang J, Xu F, Zhao J, Sun L (2013) Graphene oxide and lithium amidoborane: a new way to bridge chemical and physical approaches for hydrogen storage. J Mater Chem A 1(27):8016–8022.  https://doi.org/10.1039/C3TA10800G CrossRefGoogle Scholar
  85. 85.
    Yu X, Tang Z, Sun D, Ouyang L, Zhu M (2017) Recent advances and remaining challenges of nanostructured materials for hydrogen storage applications. Prog Mater Sci 88:1–48.  https://doi.org/10.1016/j.pmatsci.2017.03.001 CrossRefGoogle Scholar
  86. 86.
    Xia G, Chen J, Sun W, Tan Y, Guo Z, Liu H, Yu X (2014) Well-dispersed lithium amidoborane nanoparticles through nanoreactor engineering for improved hydrogen release. Nanoscale 6(21):12333–12339.  https://doi.org/10.1039/C4NR03257H CrossRefGoogle Scholar
  87. 87.
    Sutton AD, Burrell AK, Dixon DA, Garner EB, Gordon JC, Nakagawa T, Ott KC, Robinson JP, Vasiliu M (2011) Regeneration of ammonia borane spent fuel by direct reaction with hydrazine and liquid ammonia. Science 331(6023):1426–1429.  https://doi.org/10.1126/science.1199003 CrossRefGoogle Scholar
  88. 88.
    Tang Z, Tan Y, Chen X, Yu X (2012) Regenerable hydrogen storage in lithium amidoborane. Chem Commun 48(74):9296–9298.  https://doi.org/10.1039/C2CC34932A CrossRefGoogle Scholar
  89. 89.
    Reller C, Mertens FORL (2012) A self-contained regeneration scheme for spent ammonia borane based on the catalytic hydrodechlorination of BCl3. Angew Chem Int Ed 51(47):11731–11735.  https://doi.org/10.1002/anie.201201134 CrossRefGoogle Scholar
  90. 90.
    Hausdorf S, Baitalow F, Wolf G, Mertens FORL (2008) A procedure for the regeneration of ammonia borane from BNH-waste products. Int J Hydrog Energy 33(2):608–614.  https://doi.org/10.1016/j.ijhydene.2007.10.035 CrossRefGoogle Scholar
  91. 91.
    Tang Z, Zhang L, Wan L, Huang Z, Liu H, Guo Z, Yu X (2016) Regeneration of alkaline metal amidoboranes with high purity. Int J Hydrog Energy 41(1):407–412.  https://doi.org/10.1016/j.ijhydene.2015.10.136 CrossRefGoogle Scholar
  92. 92.
    Davis BL, Dixon DA, Garner EB, Gordon JC, Matus MH, Scott B, Stephens FH (2009) Efficient regeneration of partially spent ammonia borane fuel. Angew Chem Int Ed 48(37):6812–6816.  https://doi.org/10.1002/anie.200900680 CrossRefGoogle Scholar
  93. 93.
    Xu W, Zhou Y, Wang R, Wu G, Chen P (2012) Lithium amidoborane, a highly chemoselective reagent for the reduction of α,β-unsaturated ketones to allylic alcohols. Org Biomol Chem 10(2):367–371.  https://doi.org/10.1039/C1OB06368E CrossRefGoogle Scholar
  94. 94.
    Wang K, Liu DK, Wu PP, Yu XB, Cheng LJ, Zhang JG (2018) How hydrogen-storage material affects the decomposition of nitramine explosive: CPMD investigations of LAB-doped CL20. Int J Hydrog Energy 43(43):19825–19840.  https://doi.org/10.1016/j.ijhydene.2018.08.146 CrossRefGoogle Scholar
  95. 95.
    Wang K, Wu PP, Zhang TT, Liu DK, Dai CH, Zhang JG, Yu XB (2019) CPMD investigations of the improved energetic performance for lithium amidoborane doped RDX. ChemistrySelect 4(3):997–1006.  https://doi.org/10.1002/slct.201804063 CrossRefGoogle Scholar
  96. 96.
    Fijalkowski KJ, Genova RV, Filinchuk Y, Budzianowski A, Derzsi M, Jaroń T, Leszczyński PJ, Grochala W (2011) Na[Li(NH2BH3)2]—the first mixed-cation amidoborane with unusual crystal structure. Dalton Trans 40(17):4407–4413.  https://doi.org/10.1039/C0DT01491E CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Energy Materials and TechnologyGeneral Research Institute for Non-ferrous MetalsBeijingChina

Personalised recommendations