Advertisement

Journal of Materials Science

, Volume 55, Issue 6, pp 2365–2371 | Cite as

Electrowetting behaviour of thermostable liquid over wide temperature range

  • Sandip M. Wadhai
  • Yogesh B. Sawane
  • Arun G. BanpurkarEmail author
Chemical routes to materials
  • 90 Downloads

Abstract

Outdoor electrowetting (EW)-based applications need consistent wetting response in the temperatures ranging from − 40 to 70 °C. Aqueous ethylene glycol is commonly used as thermostable liquid; nevertheless, its EW behaviour over a wide range of temperature is less known. We examine this behaviour for both ac and dc voltages over the temperature range from − 25 to 65 °C. The self-consistent EW responses, i.e. cosine of contact angle versus voltage square, are analysed to illustrate the EW behaviour. There is a systematic increase in EW response with temperature confirmed from the linear dependence of interfacial tension on temperature. Our result corroborates Eötvös phenomenological relation. We suggest the need of correction voltage with changing temperature to maintain uniform EW response over this temperature range. Further with decreasing temperature, the solution viscosity increases more rapidly than the increase in interfacial tension value, and thus the capillary number \( (Ca = \mu v/\gamma ) \) gets partially regulated. This is seen as a marginal variation in the switching time of the EW contact angle during the OFF voltage state to ON state and vice versa. Finally, the working of a prototype liquid lens at − 25 °C, the lowest operating temperature, is demonstrated.

Notes

Acknowledgements

AGB gratefully acknowledge financial support under the research Grant EMR/2016/007060, from the Science and Engineering Research Board (SERB), Govt. of India. SMW would like to acknowledge CSIR, Govt. of India, for senior research fellowship (SRF) fellowship 09/137(0578/2018-EMR-I).

Supplementary material

10853_2019_4120_MOESM1_ESM.docx (87 kb)
See the supplementary material for variation in viscosity of the aqueous-EG solution as a function of ambient temperature (ES1) and the prototype of a liquid lens (ES2). (DOCX 86 kb)

References

  1. 1.
    Mugele F, Baret JC (2005) Electrowetting: from basics to applications. J Phys-Condens Matter 17:R705–R774CrossRefGoogle Scholar
  2. 2.
    Jones TB (2005) An electromechanical interpretation of electrowetting. J Micromech Microeng 15:1184–1187CrossRefGoogle Scholar
  3. 3.
    Haller B, Gopfrich K, Schroter M, Janiesch JW, Platzman I, Spatz JP (2018) Charge-controlled microfluidic formation of lipid-based single- and multicompartment systems. Lab Chip 18:2665–2674CrossRefGoogle Scholar
  4. 4.
    de Ruiter R, Pit AM, de Oliveira VM, Duits MHG, van den Ende D, Mugele F (2014) Electrostatic potential wells for on-demand drop manipulation in microchannels. Lab Chip 14:883–891CrossRefGoogle Scholar
  5. 5.
    Guan Y, Li BY, Zhu MN, Cheng SJ, Tu JY (2019) Deformation, speed, and stability of droplet motion in closed electrowetting-based digital microfluidics. Phys Fluids 31:062002CrossRefGoogle Scholar
  6. 6.
    Pit AM, Duits MHG, Mugele F (2015) Droplet manipulations in two phase flow microfluidics. Micromach Basel 6:1768–1793CrossRefGoogle Scholar
  7. 7.
    Kim DY, Steckl AJ (2007) Liquid-state field-effect transistors using electrowetting. Appl Phys Lett 90:043507CrossRefGoogle Scholar
  8. 8.
    Latip ENA, Coudron L, McDonnell MB, Johnston ID, McCluskey DK, Day R, Tracey MC (2017) Protein droplet actuation on superhydrophobic surfaces: a new approach toward anti-biofouling electrowetting systems. Rsc Adv 7:49633–49648CrossRefGoogle Scholar
  9. 9.
    Banpurkar AG, Nichols KP, Mugele F (2008) Electrowetting-based microdrop tensiometer. Langmuir 24:10549–10551CrossRefGoogle Scholar
  10. 10.
    Hsu TH, Taylor JA, Krupenkin TN (2017) Energy harvesting from aperiodic low-frequency motion using reverse electrowetting. Faraday Discuss 199:377–392CrossRefGoogle Scholar
  11. 11.
    Dey R, Gilbers J, Baratian D, Hoek H, van den Ende D, Mugele F (2018) Controlling shedding characteristics of condensate drops using electrowetting. Appl Phys Lett 113:243703CrossRefGoogle Scholar
  12. 12.
    Mishra K, Murade C, Carreel B, Roghair I, Oh JM, Manukyan G, van den Ende D, Mugele F (2014) Optofluidic lens with tunable focal length and asphericity. Sci Rep UK 4:6378CrossRefGoogle Scholar
  13. 13.
    Berge B, Peseux J (2000) Variable focal lens controlled by an external voltage: an application of electrowetting. Eur Phys J E 3:159–163CrossRefGoogle Scholar
  14. 14.
    Hendriks BHW, Kuiper S, Van As MAJ, Renders CA, Tukker TW (2005) Electrowetting-based variable-focus lens for miniature systems. Opt Rev 12:255–259CrossRefGoogle Scholar
  15. 15.
    Murade CU, van der Ende D, Mugele F (2012) High speed adaptive liquid microlens array. Opt Express 20:18180–18187CrossRefGoogle Scholar
  16. 16.
    Zohrabi M, Lim WY, Cormack RH, Supekar OD, Bright VM, Gopinath JT (2019) Lidar system with nonmechanical electrowetting-based wide-angle beam steering. Opt Express 27:4404–4415CrossRefGoogle Scholar
  17. 17.
    Heikenfeld J, Zhou K, Kreit E, Raj B, Yang S, Sun B, Milarcik A, Clapp L, Schwartz R (2009) Electrofluidic displays using Young–Laplace transposition of brilliant pigment dispersions. Nat Photonics 3:292–296CrossRefGoogle Scholar
  18. 18.
    Luo ZJ, Luo JK, Zhao WW, Cao Y, Lin WJ, Zhou GF (2018) A high-resolution and intelligent dead pixel detection scheme for an electrowetting display screen. Opt Rev 25:18–26CrossRefGoogle Scholar
  19. 19.
    Roques-Carmes T, Hayes RA, Feenstra BJ, Schlangen LJM (2004) Liquid behavior inside a reflective display pixel based on electrowetting. J Appl Phys 95:4389–4396CrossRefGoogle Scholar
  20. 20.
    Wu H, Haye RA, Li FH, Henzen A, Shui LL, Zhou GF (2018) Influence of fluoropolymer surface wettability on electrowetting display performance. Displays 53:47–53CrossRefGoogle Scholar
  21. 21.
    Zhou R, Ye QL, Li H, Jiang HW, Tang B, Zhou GF (2019) Experimental study on the reliability of water/fluoropolymer/ITO contact in electrowetting displays. Results Phys 12:1991–1998CrossRefGoogle Scholar
  22. 22.
    Li L, Wang D, Liu C, Wang QH (2016) Zoom microscope objective using electrowetting lenses. Opt Express 24:2931–2940CrossRefGoogle Scholar
  23. 23.
    Hu XD, Zhang SG, Lu XJ, Qu C, Lu LJ, MaXY Zhang XP, Deng YQ (2012) On the performance of thermostable electrowetting agents. Surf Interface Anal 44:478–483CrossRefGoogle Scholar
  24. 24.
    Ober MS, Dermody D, Maillard M, Amiot F, Malet G, Burger B, Woelfle-Gupta C, Berge B (2018) Development of biphasic formulations for use in electrowetting-based liquid lenses with a high refractive index difference. Acs Comb Sci 20:554–566CrossRefGoogle Scholar
  25. 25.
    Eötvös L (1886) Ueber den Zusammenhang der Oberflächenspannung der Flüssigkeiten mit ihrem Molecularvolumen. Ann Phys 263:448–459CrossRefGoogle Scholar
  26. 26.
    Liu CX, Park J, Choi JW (2018) A planar lens based on the electrowetting of two immiscible liquids. J Micromech Microeng 18:035023CrossRefGoogle Scholar
  27. 27.
    Banpurkar AG, Sawane Y, Wadhai SM, Murade CU, Siretanu I, van den Ende D, Mugele F (2017) Spontaneous electrification of fluoropolymer–water interfaces probed by electrowetting. Faraday Discuss 199:29–47CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Centre for Advanced Studies in Materials Science and Condensed Matter Physics, Department of PhysicsSavitribai Phule Pune UniversityPuneIndia
  2. 2.Department of PhysicsAhmednagar CollegeAhmednagarIndia

Personalised recommendations