Skip to main content

Advertisement

Log in

MnO2@NiO nanosheets@nanowires hierarchical structures with enhanced supercapacitive properties

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Transitional metal oxides are demonstrated as promising candidates for pseudocapacitive electrode materials for use in high-performance supercapacitors. Here, we report a rational design of the MnO2@NiO nanosheets@nanowires hybrid structure. The as-prepared hierarchical structure shows highly uniformity and interconnection between ultrathin MnO2 nanosheets and NiO nanowires. The well-designed MnO2@NiO is directly used as binder-free electrode and exhibits a high specific capacitance (374.6 F g−1 at a current density of 0.25 A g−1; areal capacitance of 1.3 F cm−2), good rate capability, and excellent cycling stability (92.7% capacitance retention after 5000 charge/discharge cycles). An asymmetric supercapacitor (ASC) is assembled using the MnO2@NiO as the positive electrode and activated microwave exfoliated graphite oxide as the negative electrode. The assembled ASC shows excellent electrochemical performance with an energy density of 15.4 W kg−1 and a maximum power density of 9360 W kg−1. These analytical and experimental results clearly indicate the advantages of multicomponent hierarchical core–shell structure for engineering high-performance electrochemical capacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Miller JR, Simon P (2008) Electrochemical capacitors for energy management. Science 321:651–652

    Article  CAS  Google Scholar 

  2. Wang G, Zhang L, Zhang J (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41:797–828

    Article  CAS  Google Scholar 

  3. Huang M, Li F, Dong F, Zhang YX, Zhang LL (2015) MnO2-based nanostructures for high-performance supercapacitors. J Mater Chem A 3:21380–21423

    Article  CAS  Google Scholar 

  4. Wang J, Li F, Zhu F, Schmidt OG (2018) Recent progress in micro-supercapacitor design, integration, and functionalization. Small Methods 3:1800367

    Article  Google Scholar 

  5. Yu Z, Tetard L, Zhai L, Thomas J (2015) Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions. Energ Environ Sci 8:702–730

    Article  CAS  Google Scholar 

  6. Ji J, Zhang LL, Ji H, Li Y, Zhao X, Bai X, Fan X, Zhang F, Ruoff RS (2013) Nanoporous Ni(OH)2 thin film on 3D ultrathin-graphite foam for asymmetric supercapacitor. ACS Nano 7:6237–6243

    Article  CAS  Google Scholar 

  7. Zhang LL, Zhao X (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 38:2520–2531

    Article  CAS  Google Scholar 

  8. Zhang LL, Zhou R, Zhao X (2010) Graphene-based materials as supercapacitor electrodes. J Mater Chem 20:5983–5992

    Article  CAS  Google Scholar 

  9. Li H, Wu X, Zhou J, Liu Y, Huang M, Xing W, Yan Z, Zhuo S (2019) Enhanced supercapacitive performance of MnCO3@rGO in an electrolyte with KI as additive. ChemElectroChem 6:316–319

    Article  CAS  Google Scholar 

  10. Wu ZS, Wang DW, Ren W, Zhao J, Zhou G, Li F, Cheng HM (2010) Anchoring hydrous RuO2 on graphene sheets for high-performance electrochemical capacitors. Adv Funct Mater 20:3595–3602

    Article  CAS  Google Scholar 

  11. Huang M, Zhao XL, Li F, Li W, Zhang B, Zhang YX (2015) Synthesis of Co3O4/SnO2@MnO2 core–shell nanostructures for high-performance supercapacitors. J Mater Chem A 3:12852–12857

    Article  CAS  Google Scholar 

  12. Huang M, Li F, Ji JY, Zhang YX, Zhao XL, Gao X (2014) Facile synthesis of single-crystalline NiO nanosheet arrays on Ni foam for high-performance supercapacitors. CrystEngComm 16:2878–2884

    Article  CAS  Google Scholar 

  13. Yao B, Chandrasekaran S, Zhang J, Xiao W, Qian F, Zhu C, Duoss EB, Spadaccini CM, Worsley MA, Li Y (2019) Efficient 3D printed pseudocapacitive electrodes with ultrahigh MnO2 loading. Joule 3:459–470

    Article  CAS  Google Scholar 

  14. Xu W, Dai S, Liu G, Xi Y, Hu C, Wang X (2016) CuO nanoflowers growing on carbon fiber fabric for flexible high-performance supercapacitors. Electrochim Acta 203:1–8

    Article  CAS  Google Scholar 

  15. Huang M, Zhao XL, Li F, Zhang LL, Zhang YX (2015) Facile synthesis of ultrathin manganese dioxide nanosheets arrays on nickel foam as advanced binder-free supercapacitor electrodes. J Power Sources 277:36–43

    Article  CAS  Google Scholar 

  16. Huang M, Mi R, Liu H, Li F, Zhao XL, Zhang W, He SX, Zhang YX (2014) Layered manganese oxides-decorated and nickel foam-supported carbon nanotubes as advanced binder-free supercapacitor electrodes. J Power Sources 269:760–767

    Article  CAS  Google Scholar 

  17. Toupin M, Brousse T, Bélanger D (2004) Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor. Chem Mater 16:3184–3190

    Article  CAS  Google Scholar 

  18. Huang Z-H, Song Y, Feng D-Y, Sun Z, Sun X, Liu X-X (2018) High mass loading MnO2 with hierarchical nanostructures for supercapacitors. ACS Nano 12:3557–3567

    Article  CAS  Google Scholar 

  19. Li Q, Wang Z-L, Li G-R, Guo R, Ding L-X, Tong Y-X (2012) Design and synthesis of MnO2/Mn/MnO2 sandwich-structured nanotube arrays with high supercapacitive performance for electrochemical energy storage. Nano Lett 12:3803–3807

    Article  CAS  Google Scholar 

  20. Wu Z-S, Ren W, Wang D-W, Li F, Liu B, Cheng H-M (2010) High-energy MnO2 nanowire/graphene and graphene asymmetric electrochemical capacitors. ACS Nano 4:5835–5842

    Article  CAS  Google Scholar 

  21. Li F, Xing Y, Huang M, Li KL, Yu TT, Zhang YX, Losic D (2015) MnO2 nanostructures with three-dimensional (3D) morphology replicated from diatoms for high-performance supercapacitors. J Mater Chem A 3:7855–7861

    Article  CAS  Google Scholar 

  22. Le QJ, Huang M, Wang T, Liu XY, Sun L, Guo XL, Jiang DB, Wang J, Dong F, Zhang YX (2019) Biotemplate derived three dimensional nitrogen doped graphene@ MnO2 as bifunctional material for supercapacitor and oxygen reduction reaction catalyst. J Colloid Interface Sci 544:155–163

    Article  CAS  Google Scholar 

  23. Qi H, Bo Z, Yang S, Duan L, Yang H, Yan J, Cen K, Ostrikov KK (2019) Hierarchical nanocarbon-MnO2 electrodes for enhanced electrochemical capacitor performance. Energy Storage Mater 16:607–618

    Article  Google Scholar 

  24. Lv X, Zhang H, Wang F, Hu Z, Zhang Y, Zhang L, Xie R, Ji J (2018) Controllable synthesis of MnO2 nanostructures anchored on graphite foam with different morphologies for a high-performance asymmetric supercapacitor. CrystEngComm 20:1690–1697

    Article  CAS  Google Scholar 

  25. Liu J, Jiang J, Bosman M, Fan HJ (2012) Three-dimensional tubular arrays of MnO2–NiO nanoflakes with high areal pseudocapacitance. J Mater Chem 22:2419–2426

    Article  CAS  Google Scholar 

  26. Zhang X, Yu P, Zhang H, Zhang D, Sun X, Ma Y (2013) Rapid hydrothermal synthesis of hierarchical nanostructures assembled from ultrathin birnessite-type MnO2 nanosheets for supercapacitor applications. Electrochim Acta 89:523–529

    Article  CAS  Google Scholar 

  27. Soriano L, Preda I, Gutiérrez A, Palacín S, Abbate M, Vollmer A (2007) Surface effects in the Ni2p x-ray photoemission spectra of NiO. Phys Rev B 75:233417

    Article  Google Scholar 

  28. Preda I, Gutiérrez A, Abbate M, Yubero F, Méndez J, Alvarez L, Soriano L (2008) Interface effects in the Ni2p x-ray photoelectron spectra of NiO thin films grown on oxide substrates. Phys Rev B 77:075411

    Article  Google Scholar 

  29. Chen J, Huang Y, Li C, Chen X, Zhang X (2016) Synthesis of NiO@MnO2 core/shell nanocomposites for supercapacitor application. Appl Surf Sci 360:534–539

    Article  CAS  Google Scholar 

  30. Chao D, Zhou W, Ye C, Zhang Q, Chen Y, Gu L, Davey K, Qiao SZ (2019) An electrolytic Zn–MnO2 battery for high-voltage and scalable energy storage. Angew Chem Int Ed 58:7823–7828

    Article  CAS  Google Scholar 

  31. Yu G, Hu L, Vosgueritchian M, Wang H, Xie X, McDonough JR, Cui X, Cui Y, Bao Z (2011) Solution-processed graphene/MnO2 nanostructured textiles for high-performance electrochemical capacitors. Nano Lett 11:2905–2911

    Article  CAS  Google Scholar 

  32. Deng L, Zhu G, Wang J, Kang L, Liu Z-H, Yang Z, Wang Z (2011) Graphene–MnO2 and graphene asymmetrical electrochemical capacitor with a high energy density in aqueous electrolyte. J Power Sources 196:10782–10787

    Article  CAS  Google Scholar 

  33. Zhang S, Yin B, Wang Z, Peter F (2016) Super long-life all solid-state asymmetric supercapacitor based on NiO nanosheets and α-Fe2O3 nanorods. Chem Eng J 306:193–203

    Article  CAS  Google Scholar 

  34. Xu W, Mu B, Wang A (2016) Facile fabrication of well-defined microtubular carbonized kapok fiber/NiO composites as electrode material for supercapacitor. Electrochim Acta 194:84–94

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial support funded by Chongqing Special Postdoctoral Science Foundation (XmT2018043) was highly appreciated. FL acknowledges the support and funding from China Scholarship Council (CSC).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fei Li or Ming Huang.

Ethics declarations

Conflict of interest

All authors listed have declared that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 4853 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Liu, X., Li, F. et al. MnO2@NiO nanosheets@nanowires hierarchical structures with enhanced supercapacitive properties. J Mater Sci 55, 2482–2491 (2020). https://doi.org/10.1007/s10853-019-04112-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-04112-4

Navigation