Advertisement

MnO2@NiO nanosheets@nanowires hierarchical structures with enhanced supercapacitive properties

  • Xiaoli Zhao
  • Xiaoying Liu
  • Fei LiEmail author
  • Ming HuangEmail author
Energy materials
  • 6 Downloads

Abstract

Transitional metal oxides are demonstrated as promising candidates for pseudocapacitive electrode materials for use in high-performance supercapacitors. Here, we report a rational design of the MnO2@NiO nanosheets@nanowires hybrid structure. The as-prepared hierarchical structure shows highly uniformity and interconnection between ultrathin MnO2 nanosheets and NiO nanowires. The well-designed MnO2@NiO is directly used as binder-free electrode and exhibits a high specific capacitance (374.6 F g−1 at a current density of 0.25 A g−1; areal capacitance of 1.3 F cm−2), good rate capability, and excellent cycling stability (92.7% capacitance retention after 5000 charge/discharge cycles). An asymmetric supercapacitor (ASC) is assembled using the MnO2@NiO as the positive electrode and activated microwave exfoliated graphite oxide as the negative electrode. The assembled ASC shows excellent electrochemical performance with an energy density of 15.4 W kg−1 and a maximum power density of 9360 W kg−1. These analytical and experimental results clearly indicate the advantages of multicomponent hierarchical core–shell structure for engineering high-performance electrochemical capacitors.

Notes

Acknowledgements

The financial support funded by Chongqing Special Postdoctoral Science Foundation (XmT2018043) was highly appreciated. FL acknowledges the support and funding from China Scholarship Council (CSC).

Compliance with ethical standards

Conflict of interest

All authors listed have declared that they have no conflict of interest.

Supplementary material

10853_2019_4112_MOESM1_ESM.docx (4.7 mb)
Supplementary material 1 (DOCX 4853 kb)

References

  1. 1.
    Miller JR, Simon P (2008) Electrochemical capacitors for energy management. Science 321:651–652CrossRefGoogle Scholar
  2. 2.
    Wang G, Zhang L, Zhang J (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41:797–828CrossRefGoogle Scholar
  3. 3.
    Huang M, Li F, Dong F, Zhang YX, Zhang LL (2015) MnO2-based nanostructures for high-performance supercapacitors. J Mater Chem A 3:21380–21423CrossRefGoogle Scholar
  4. 4.
    Wang J, Li F, Zhu F, Schmidt OG (2018) Recent progress in micro-supercapacitor design, integration, and functionalization. Small Methods 3:1800367CrossRefGoogle Scholar
  5. 5.
    Yu Z, Tetard L, Zhai L, Thomas J (2015) Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions. Energ Environ Sci 8:702–730CrossRefGoogle Scholar
  6. 6.
    Ji J, Zhang LL, Ji H, Li Y, Zhao X, Bai X, Fan X, Zhang F, Ruoff RS (2013) Nanoporous Ni(OH)2 thin film on 3D ultrathin-graphite foam for asymmetric supercapacitor. ACS Nano 7:6237–6243CrossRefGoogle Scholar
  7. 7.
    Zhang LL, Zhao X (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 38:2520–2531CrossRefGoogle Scholar
  8. 8.
    Zhang LL, Zhou R, Zhao X (2010) Graphene-based materials as supercapacitor electrodes. J Mater Chem 20:5983–5992CrossRefGoogle Scholar
  9. 9.
    Li H, Wu X, Zhou J, Liu Y, Huang M, Xing W, Yan Z, Zhuo S (2019) Enhanced supercapacitive performance of MnCO3@rGO in an electrolyte with KI as additive. ChemElectroChem 6:316–319CrossRefGoogle Scholar
  10. 10.
    Wu ZS, Wang DW, Ren W, Zhao J, Zhou G, Li F, Cheng HM (2010) Anchoring hydrous RuO2 on graphene sheets for high-performance electrochemical capacitors. Adv Funct Mater 20:3595–3602CrossRefGoogle Scholar
  11. 11.
    Huang M, Zhao XL, Li F, Li W, Zhang B, Zhang YX (2015) Synthesis of Co3O4/SnO2@MnO2 core–shell nanostructures for high-performance supercapacitors. J Mater Chem A 3:12852–12857CrossRefGoogle Scholar
  12. 12.
    Huang M, Li F, Ji JY, Zhang YX, Zhao XL, Gao X (2014) Facile synthesis of single-crystalline NiO nanosheet arrays on Ni foam for high-performance supercapacitors. CrystEngComm 16:2878–2884CrossRefGoogle Scholar
  13. 13.
    Yao B, Chandrasekaran S, Zhang J, Xiao W, Qian F, Zhu C, Duoss EB, Spadaccini CM, Worsley MA, Li Y (2019) Efficient 3D printed pseudocapacitive electrodes with ultrahigh MnO2 loading. Joule 3:459–470CrossRefGoogle Scholar
  14. 14.
    Xu W, Dai S, Liu G, Xi Y, Hu C, Wang X (2016) CuO nanoflowers growing on carbon fiber fabric for flexible high-performance supercapacitors. Electrochim Acta 203:1–8CrossRefGoogle Scholar
  15. 15.
    Huang M, Zhao XL, Li F, Zhang LL, Zhang YX (2015) Facile synthesis of ultrathin manganese dioxide nanosheets arrays on nickel foam as advanced binder-free supercapacitor electrodes. J Power Sources 277:36–43CrossRefGoogle Scholar
  16. 16.
    Huang M, Mi R, Liu H, Li F, Zhao XL, Zhang W, He SX, Zhang YX (2014) Layered manganese oxides-decorated and nickel foam-supported carbon nanotubes as advanced binder-free supercapacitor electrodes. J Power Sources 269:760–767CrossRefGoogle Scholar
  17. 17.
    Toupin M, Brousse T, Bélanger D (2004) Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor. Chem Mater 16:3184–3190CrossRefGoogle Scholar
  18. 18.
    Huang Z-H, Song Y, Feng D-Y, Sun Z, Sun X, Liu X-X (2018) High mass loading MnO2 with hierarchical nanostructures for supercapacitors. ACS Nano 12:3557–3567CrossRefGoogle Scholar
  19. 19.
    Li Q, Wang Z-L, Li G-R, Guo R, Ding L-X, Tong Y-X (2012) Design and synthesis of MnO2/Mn/MnO2 sandwich-structured nanotube arrays with high supercapacitive performance for electrochemical energy storage. Nano Lett 12:3803–3807CrossRefGoogle Scholar
  20. 20.
    Wu Z-S, Ren W, Wang D-W, Li F, Liu B, Cheng H-M (2010) High-energy MnO2 nanowire/graphene and graphene asymmetric electrochemical capacitors. ACS Nano 4:5835–5842CrossRefGoogle Scholar
  21. 21.
    Li F, Xing Y, Huang M, Li KL, Yu TT, Zhang YX, Losic D (2015) MnO2 nanostructures with three-dimensional (3D) morphology replicated from diatoms for high-performance supercapacitors. J Mater Chem A 3:7855–7861CrossRefGoogle Scholar
  22. 22.
    Le QJ, Huang M, Wang T, Liu XY, Sun L, Guo XL, Jiang DB, Wang J, Dong F, Zhang YX (2019) Biotemplate derived three dimensional nitrogen doped graphene@ MnO2 as bifunctional material for supercapacitor and oxygen reduction reaction catalyst. J Colloid Interface Sci 544:155–163CrossRefGoogle Scholar
  23. 23.
    Qi H, Bo Z, Yang S, Duan L, Yang H, Yan J, Cen K, Ostrikov KK (2019) Hierarchical nanocarbon-MnO2 electrodes for enhanced electrochemical capacitor performance. Energy Storage Mater 16:607–618CrossRefGoogle Scholar
  24. 24.
    Lv X, Zhang H, Wang F, Hu Z, Zhang Y, Zhang L, Xie R, Ji J (2018) Controllable synthesis of MnO2 nanostructures anchored on graphite foam with different morphologies for a high-performance asymmetric supercapacitor. CrystEngComm 20:1690–1697CrossRefGoogle Scholar
  25. 25.
    Liu J, Jiang J, Bosman M, Fan HJ (2012) Three-dimensional tubular arrays of MnO2–NiO nanoflakes with high areal pseudocapacitance. J Mater Chem 22:2419–2426CrossRefGoogle Scholar
  26. 26.
    Zhang X, Yu P, Zhang H, Zhang D, Sun X, Ma Y (2013) Rapid hydrothermal synthesis of hierarchical nanostructures assembled from ultrathin birnessite-type MnO2 nanosheets for supercapacitor applications. Electrochim Acta 89:523–529CrossRefGoogle Scholar
  27. 27.
    Soriano L, Preda I, Gutiérrez A, Palacín S, Abbate M, Vollmer A (2007) Surface effects in the Ni2p x-ray photoemission spectra of NiO. Phys Rev B 75:233417CrossRefGoogle Scholar
  28. 28.
    Preda I, Gutiérrez A, Abbate M, Yubero F, Méndez J, Alvarez L, Soriano L (2008) Interface effects in the Ni2p x-ray photoelectron spectra of NiO thin films grown on oxide substrates. Phys Rev B 77:075411CrossRefGoogle Scholar
  29. 29.
    Chen J, Huang Y, Li C, Chen X, Zhang X (2016) Synthesis of NiO@MnO2 core/shell nanocomposites for supercapacitor application. Appl Surf Sci 360:534–539CrossRefGoogle Scholar
  30. 30.
    Chao D, Zhou W, Ye C, Zhang Q, Chen Y, Gu L, Davey K, Qiao SZ (2019) An electrolytic Zn–MnO2 battery for high-voltage and scalable energy storage. Angew Chem Int Ed 58:7823–7828CrossRefGoogle Scholar
  31. 31.
    Yu G, Hu L, Vosgueritchian M, Wang H, Xie X, McDonough JR, Cui X, Cui Y, Bao Z (2011) Solution-processed graphene/MnO2 nanostructured textiles for high-performance electrochemical capacitors. Nano Lett 11:2905–2911CrossRefGoogle Scholar
  32. 32.
    Deng L, Zhu G, Wang J, Kang L, Liu Z-H, Yang Z, Wang Z (2011) Graphene–MnO2 and graphene asymmetrical electrochemical capacitor with a high energy density in aqueous electrolyte. J Power Sources 196:10782–10787CrossRefGoogle Scholar
  33. 33.
    Zhang S, Yin B, Wang Z, Peter F (2016) Super long-life all solid-state asymmetric supercapacitor based on NiO nanosheets and α-Fe2O3 nanorods. Chem Eng J 306:193–203CrossRefGoogle Scholar
  34. 34.
    Xu W, Mu B, Wang A (2016) Facile fabrication of well-defined microtubular carbonized kapok fiber/NiO composites as electrode material for supercapacitor. Electrochim Acta 194:84–94CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Material Science and EngineeringChongqing UniversityChongqingPeople’s Republic of China
  2. 2.Engineering Research Center for Waste Oil Recovery Technology and Equipment of Ministry of Education, College of Environment and ResourcesChongqing Technology and Business UniversityChongqingPeople’s Republic of China
  3. 3.Material Systems for NanoelectronicsTechnische Universität ChemnitzChemnitzGermany
  4. 4.School of Materials Science and EngineeringUlsan National Institute of Science and Technology (UNIST)UlsanRepublic of Korea

Personalised recommendations