Polymer-supported graphene–TiO2 doped with nonmetallic elements with enhanced photocatalytic reaction under visible light
- 101 Downloads
Abstract
Exploiting photocatalysts with environmental friendliness, noble-metal-free and high efficiency is a great challenge for photocatalytic hydrogen evolution under visible light. In this work, we had successfully loaded anatase titanium dioxide with a special graphene structure [the reduced graphene oxide loaded on amine-functionalized poly (styrene/glycidyl methacrylate) (rGO/PSGM) microspheres. This special structure could greatly improve the catalytic performance of TiO2 in the visible light. The nonmetallic elements (C, N, F, P and S) were doped with TiO2 to further improve the performance of the composite photocatalysts in the visible-light region. After the first-principles density functional theory calculation, the calculated results of the density of states and dielectric function showed that the doped N element has the highest optical absorption capacity. We had proved this through experimental synthesis. Under the full-wavelength illumination, the degradation rate was 20 times higher than that of physically mixed sample; under the visible light, the k value of the degradation rate was 0.0046 min−1 while physically mixed sample had almost no reaction within 5 h. Our study provides a promising approach to achieving efficient photocatalytic reaction under visible light based on TiO2 and graphene without precious metals.
Abbreviations
- rGO
Reduced graphene oxide
- PSGM
Poly (styrene/glycidyl methacrylate)
- DFT
Density functional theory
- DOS
Density of states
- AIBN
Tetrabutyl titanate, 2-methylpropionitrile
- GMA
Glycidyl methacrylate
- PVP
Polyvinyl pyrrolidone
- MO
Methyl orange
- PAW
Projector-augmented plane wave
- VB
Valence band
- CB
Conduction band
Notes
References
- 1.Yu ZB, Xie YP, Liu G, Lu GQ, Ma XL, Cheng HM (2013) Self-assembled CdS/Au/ZnO heterostructure induced by surface polar charges for efficient photocatalytic hydrogen evolution. J Mater Chem A 1(8):2773–2776CrossRefGoogle Scholar
- 2.Yu HG, Chen WY, Wang XF, Xu Y, Yu JG (2016) Enhanced photocatalytic activity and photoinduced stability of Ag-based photocatalysts: the synergistic action of amorphous-Ti(IV) and Fe(III) cocatalysts. Appl Catal B Environ 187:163–170CrossRefGoogle Scholar
- 3.Li LD, Yan JQ, Wang T, Zhao ZJ, Zhang J, Gong JL, Guan NJ (2015) Sub-10 nm rutile titanium dioxide nanoparticles for efficient visible-light-driven photocatalytic hydrogen production. Nat Commun 6:5881CrossRefGoogle Scholar
- 4.Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y (2001) Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293(5528):269–271CrossRefGoogle Scholar
- 5.Qi LF, Yu JG, Jaroniec M (2011) Preparation and enhanced visible-light photocatalytic H-2-production activity of CdS-sensitized Pt/TiO2 nanosheets with exposed (001) facets. Phys Chem Chem Phys 13(19):8915–8923. https://doi.org/10.1039/c1cp20079h CrossRefGoogle Scholar
- 6.Wang XF, Zhan S, Wang Y, Wang P, Yu HG, Yu JG, Hu CZ (2014) Facile synthesis and enhanced visible-light photocatalytic activity of Ag2S nanocrystal-sensitized Ag8W4O16 nanorods. J Colloid Interface Sci 422:30–37. https://doi.org/10.1016/j.jcis.2014.02.009 CrossRefGoogle Scholar
- 7.Yu HG, Liu R, Wang XF, Wang P, Yu JG (2012) Enhanced visible-light photocatalytic activity of Bi2WO6 nanoparticles by Ag2O cocatalyst. Appl Catal B Environ 111:326–333. https://doi.org/10.1016/j.apcatb.2011.10.015 CrossRefGoogle Scholar
- 8.Gu YJ, Xing MY, Zhang JL (2014) Synthesis and photocatalytic activity of graphene based doped TiO2 nanocomposites. Appl Surf Sci 319:8–15. https://doi.org/10.1016/j.apsusc.2014.04.182 CrossRefGoogle Scholar
- 9.Wang P, Xia Y, Wu PP, Wang XF, Yu HG, Yu JG (2014) Cu(II) as a general cocatalyst for improved visible-light photocatalytic performance of photosensitive Ag-based compounds. J Phys Chem C 118(17):8891–8898. https://doi.org/10.1021/jp410413s CrossRefGoogle Scholar
- 10.Aleksandrzak M, Adamski P, Kukulka W, Zielinska B, Mijowska E (2015) Effect of graphene thickness on photocatalytic activity of TiO2–graphene nanocomposites. Appl Surf Sci 331:193–199. https://doi.org/10.1016/j.apsusc.2015.01.070 CrossRefGoogle Scholar
- 11.Zheng ZK, Huang BB, Qin XY, Zhang XY, Dai Y, Whangbo MH (2011) Facile in situ synthesis of visible-light plasmonic photocatalysts M@TiO2 (M = Au, Pt, Ag) and evaluation of their photocatalytic oxidation of benzene to phenol. J Mater Chem 21(25):9079–9087. https://doi.org/10.1039/c1jm10983a CrossRefGoogle Scholar
- 12.Seh ZW, Liu SH, Low M, Zhang SY, Liu ZL, Mlayah A, Han MY (2012) Janus Au–TiO2 photocatalysts with strong localization of plasmonic near-fields for efficient visible-light hydrogen generation. Adv Mater 24(17):2310–2314. https://doi.org/10.1002/adma.201104241 CrossRefGoogle Scholar
- 13.Chen Z, Liu SQ, Yang MQ, Xu YJ (2013) Synthesis of uniform CdS nanospheres/graphene hybrid nanocomposites and their application as visible light photocatalyst for selective reduction of nitro organics in water. ACS Appl Mater Interfaces 5(10):4309–4319. https://doi.org/10.1021/am4010286 CrossRefGoogle Scholar
- 14.Gobal F, Faraji M (2015) Electrochemical synthesis of reduced graphene oxide/TiO2 nanotubes/Ti for high-performance supercapacitors. Ionics 21(2):525–531. https://doi.org/10.1007/s11581-014-1177-1 CrossRefGoogle Scholar
- 15.Han C, Yang MQ, Zhang N, Xu YJ (2014) Enhancing the visible light photocatalytic performance of ternary CdS–(graphene–Pd) nanocomposites via a facile interfacial mediator and co-catalyst strategy. J Mater Chem A 2(45):19156–19166. https://doi.org/10.1039/c4ta04151h CrossRefGoogle Scholar
- 16.Ke F, Wang LH, Zhu JF (2015) Facile fabrication of CdS-metal-organic framework nanocomposites with enhanced visible-light photocatalytic activity for organic transformation. Nano Res 8(6):1834–1846. https://doi.org/10.1007/s12274-014-0690-x CrossRefGoogle Scholar
- 17.Tan LL, Ong WJ, Chai SP, Mohamed AR (2015) Noble metal modified reduced graphene oxide/TiO2 ternary nanostructures for efficient visible-light-driven photoreduction of carbon dioxide into methane. Appl Catal B Environ 166:251–259. https://doi.org/10.1016/j.apcatb.2014.11.035 CrossRefGoogle Scholar
- 18.Zhang N, Yang MQ, Tang ZR, Xu YJ (2014) Toward improving the graphene-semiconductor composite photoactivity via the addition of metal ions as generic interfacial mediator. ACS Nano 8(1):623–633. https://doi.org/10.1021/nn405242t CrossRefGoogle Scholar
- 19.Cui Y, Zhou D, Sui ZY, Han BH (2015) Sonochemical synthesis of graphene oxide-wrapped gold nanoparticles hybrid materials: visible light photocatalytic activity. Chin J Chem 33(1):119–124. https://doi.org/10.1002/cjoc.201400309 CrossRefGoogle Scholar
- 20.Challagulla S, Tarafder K, Ganesan R, Roy S (2017) Structure sensitive photocatalytic reduction of nitroarenes over TiO2. Sci Rep 7(1):8783. https://doi.org/10.1038/s41598-017-08599-2 CrossRefGoogle Scholar
- 21.Soman B, Challagulla S, Payra S, Dinda S, Roy S (2017) Surface morphology and active sites of TiO2 for photoassisted catalysis. Res Chem Intermed 44(4):2261–2273. https://doi.org/10.1007/s11164-017-3227-6 CrossRefGoogle Scholar
- 22.Challagulla S, Payra S, Bajaj M, Roy S (2019) Role of synthesis of upconversion nanoparticles towards surface modification and photocatalysis. Bull Mater Sci 42(3):102. https://doi.org/10.1007/s12034-019-1804-6 CrossRefGoogle Scholar
- 23.Payra S, Challagulla S, Bobde Y, Chakraborty C, Ghosh B, Roy S (2019) Probing the photo- and electro-catalytic degradation mechanism of methylene blue dye over ZIF-derived ZnO. J Hazard Mater 373:377–388. https://doi.org/10.1016/j.jhazmat.2019.03.053 CrossRefGoogle Scholar
- 24.Oh J, Lee JH, Koo JC, Choi HR, Lee Y, Kim T, Luong ND, Nam JD (2010) Graphene oxide porous paper from amine-functionalized poly(glycidyl methacrylate)/graphene oxide core-shell microspheres. J Mater Chem 20(41):9200–9204. https://doi.org/10.1039/c0jm00107d CrossRefGoogle Scholar
- 25.Xu Y, Mo Y, Tian J, Wang P, Yu H, Yu J (2016) The synergistic effect of graphitic N and pyrrolic N for the enhanced photocatalytic performance of nitrogen-doped graphene/TiO2 nanocomposites. Appl Catal B 181:810–817. https://doi.org/10.1016/j.apcatb.2015.08.049 CrossRefGoogle Scholar
- 26.Zhang JP, Liao JJ, Yang F, Xu M, Lin SW (2017) Regulation of the electroanalytical performance of ultrathin titanium dioxide nanosheets toward lead ions by non-metal doping. Nanomaterials 7(10):327. https://doi.org/10.3390/nano7100327 CrossRefGoogle Scholar
- 27.Zheng X, Zhang JC, Peng LL, Yang XY, Cao WL (2011) The effects of electronic structure of non-metallic doped TiO2 anode and co-sensitization on the performance of dye-sensitized solar cells. J Mater Sci 46(15):5071–5078. https://doi.org/10.1007/s10853-011-5433-8 CrossRefGoogle Scholar
- 28.Liu P, Huang Y, Yan J, Zhao Y (2016) Magnetic graphene@PANI@porous TiO2 ternary composites for high-performance electromagnetic wave absorption. J Mater Chem C 4(26):6362–6370. https://doi.org/10.1039/c6tc01718e CrossRefGoogle Scholar
- 29.Liu P, Zhang Y, Yan J, Huang Y, Xia L, Guang Z (2019) Synthesis of lightweight N-doped graphene foams with open reticular structure for high-efficiency electromagnetic wave absorption. Chem Eng J 368:285–298. https://doi.org/10.1016/j.cej.2019.02.193 CrossRefGoogle Scholar
- 30.Wang J, Tafen DN, Lewis JP, Hong Z, Manivannan A, Zhi M, Li M, Wu N (2009) Origin of photocatalytic activity of nitrogen-doped TiO2 nanobelts. J Am Chem Soc 131(34):12290–12297CrossRefGoogle Scholar
- 31.Liu B, Chen HM, Liu C, Andrews SC, Hahn C, Yang P (2013) Large-scale synthesis of transition-metal-doped TiO2 nanowires with controllable overpotential. J Am Chem Soc 135(27):9995CrossRefGoogle Scholar
- 32.Lü X, Yang W, Quan Z, Lin T, Bai L, Wang L, Huang F, Zhao Y (2014) Enhanced electron transport in Nb-doped TiO2 nanoparticles via pressure-induced phase transitions. J Am Chem Soc 136(1):419CrossRefGoogle Scholar
- 33.Mousa MA, Khairy M, Mohamed HM (2018) Dye-sensitized solar cells based on an N-doped TiO2 and TiO2–graphene composite electrode. J Electron Mater 47(10):6241–6250. https://doi.org/10.1007/s11664-018-6530-0 CrossRefGoogle Scholar
- 34.Sun R, Huang W, Zhang Q, Hong J-m (2018) Facilely prepared N-doped graphene/Pt/TiO2 as an efficient anode for acetaminophen degradation. Catal Lett 148(8):2418–2431. https://doi.org/10.1007/s10562-018-2466-5 CrossRefGoogle Scholar
- 35.Zou Y, Zhang Z, Zhong W, Yang W (2018) Hydrothermal direct synthesis of polyaniline, graphene/polyaniline and N-doped graphene/polyaniline hydrogels for high performance flexible supercapacitors. J Mater Chem A 6(19):9245–9256. https://doi.org/10.1039/c8ta01366g CrossRefGoogle Scholar
- 36.Yang KS, Dai Y, Huang BB (2007) Study of the nitrogen concentration influence on N-doped TiO2 anatase from first-principles calculations. J Phys Chem C 111(32):12086–12090. https://doi.org/10.1021/jp067491f CrossRefGoogle Scholar
- 37.Harb M (2013) Screened Coulomb hybrid DFT study on electronic structure and optical properties of anionic and cationic Te-doped anatase TiO2. J Phys Chem C 117(25):12942–12948. https://doi.org/10.1021/jp400880b CrossRefGoogle Scholar
- 38.Zhang M, Yin K, Hood ZD, Bi Z, Bridges CA, Dai S, Meng YS, Paranthaman MP, Chi M (2017) In situ TEM observation of the electrochemical lithiation of N-doped anatase TiO2 nanotubes as anodes for lithium-ion batteries. J Mater Chem A 5(6):20651–20657CrossRefGoogle Scholar
- 39.Pan X, Liang X, Yao L, Wang X, Jing Y, Ma J, Fei Y, Chen L, Mi L (2017) Study of the photodynamic activity of N-doped TiO2 nanoparticles conjugated with aluminum phthalocyanine. Nanomaterials 7(10):338CrossRefGoogle Scholar
- 40.Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Alemany LB, Lu W, Tour JM (2010) Improved synthesis of graphene oxide. ACS Nano 4(8):4806CrossRefGoogle Scholar
- 41.Xu J, Wang L, Cao X (2016) Polymer supported graphene–CdS composite catalyst with enhanced photocatalytic hydrogen production from water splitting under visible light. Chem Eng J 283:816–825CrossRefGoogle Scholar
- 42.Mu HY, Wan JF, Wu YW, Xu J, Wang L, Cao XJ (2018) Novel polymer supported graphene and molybdenum sulfide as highly efficient cocatalyst for photocatalytic hydrogen evolution. Int J Hydrog Energy 43(39):18105–18114. https://doi.org/10.1016/j.ijhydene.2018.06.129 CrossRefGoogle Scholar
- 43.Li Y, Li X, Li J, Yin J (2006) Photocatalytic degradation of methyl orange by TiO2-coated activated carbon and kinetic study. Water Res 40(6):1119–1126. https://doi.org/10.1016/j.watres.2005.12.042 CrossRefGoogle Scholar
- 44.Stadler R, Wolf W, Podloucky R, Kresse G, Furthmüller J, Hafner J (1996) Ab initio calculations of the cohesive, elastic, and dynamical properties of CoSi2 by pseudopotential and all-electron techniques. Phys Rev B Condens Matter 54(3):1729–1734CrossRefGoogle Scholar
- 45.Kresse G, Hafner J (1993) Ab initio molecular dynamics for liquid metals. Phys Rev B Condens Matter 48(17):13115–13118CrossRefGoogle Scholar
- 46.Perdew JP, Burke K, Ernzerhof M (1998) Erratum: generalized gradient approximation made simple [Phys. Rev. Lett. 77, 3865 (1996)]. Phys Rev Lett 77(18):3865–3868CrossRefGoogle Scholar
- 47.Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59(3):1758–1775CrossRefGoogle Scholar
- 48.Dudarev SL, Botton GA, Savrasov SY, Humphreys CJ, Sutton AP (1998) Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA + U study. Phys Rev B 57(3):1505–1509CrossRefGoogle Scholar
- 49.Ambrosch-Draxl C, Sofo JO (2006) Linear optical properties of solids within the full-potential linearized augmented planewave method. Comput Phys Commun 175(1):1–14CrossRefGoogle Scholar
- 50.Long R (2013) Electronic structure of semiconducting and metallic tubes in TiO2/carbon nanotube heterojunctions: density functional theory calculations. J Phys Chem Lett 4(8):1340–1346. https://doi.org/10.1021/jz400589v CrossRefGoogle Scholar
- 51.Challagulla S, Tarafder K, Ganesan R, Roy S (2017) All that Glitters Is Not Gold: a probe into photocatalytic nitrate reduction mechanism over noble metal doped and undoped TiO2. J Phys Chem C 121(49):27406–27416CrossRefGoogle Scholar