Journal of Materials Science

, Volume 55, Issue 4, pp 1577–1591 | Cite as

Polymer-supported graphene–TiO2 doped with nonmetallic elements with enhanced photocatalytic reaction under visible light

  • Yuanwang Wu
  • Haiyan Mu
  • Xuejun CaoEmail author
  • Xiao HeEmail author
Electronic materials


Exploiting photocatalysts with environmental friendliness, noble-metal-free and high efficiency is a great challenge for photocatalytic hydrogen evolution under visible light. In this work, we had successfully loaded anatase titanium dioxide with a special graphene structure [the reduced graphene oxide loaded on amine-functionalized poly (styrene/glycidyl methacrylate) (rGO/PSGM) microspheres. This special structure could greatly improve the catalytic performance of TiO2 in the visible light. The nonmetallic elements (C, N, F, P and S) were doped with TiO2 to further improve the performance of the composite photocatalysts in the visible-light region. After the first-principles density functional theory calculation, the calculated results of the density of states and dielectric function showed that the doped N element has the highest optical absorption capacity. We had proved this through experimental synthesis. Under the full-wavelength illumination, the degradation rate was 20 times higher than that of physically mixed sample; under the visible light, the k value of the degradation rate was 0.0046 min−1 while physically mixed sample had almost no reaction within 5 h. Our study provides a promising approach to achieving efficient photocatalytic reaction under visible light based on TiO2 and graphene without precious metals.



Reduced graphene oxide


Poly (styrene/glycidyl methacrylate)


Density functional theory


Density of states


Tetrabutyl titanate, 2-methylpropionitrile


Glycidyl methacrylate


Polyvinyl pyrrolidone


Methyl orange


Projector-augmented plane wave


Valence band


Conduction band



  1. 1.
    Yu ZB, Xie YP, Liu G, Lu GQ, Ma XL, Cheng HM (2013) Self-assembled CdS/Au/ZnO heterostructure induced by surface polar charges for efficient photocatalytic hydrogen evolution. J Mater Chem A 1(8):2773–2776CrossRefGoogle Scholar
  2. 2.
    Yu HG, Chen WY, Wang XF, Xu Y, Yu JG (2016) Enhanced photocatalytic activity and photoinduced stability of Ag-based photocatalysts: the synergistic action of amorphous-Ti(IV) and Fe(III) cocatalysts. Appl Catal B Environ 187:163–170CrossRefGoogle Scholar
  3. 3.
    Li LD, Yan JQ, Wang T, Zhao ZJ, Zhang J, Gong JL, Guan NJ (2015) Sub-10 nm rutile titanium dioxide nanoparticles for efficient visible-light-driven photocatalytic hydrogen production. Nat Commun 6:5881CrossRefGoogle Scholar
  4. 4.
    Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y (2001) Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293(5528):269–271CrossRefGoogle Scholar
  5. 5.
    Qi LF, Yu JG, Jaroniec M (2011) Preparation and enhanced visible-light photocatalytic H-2-production activity of CdS-sensitized Pt/TiO2 nanosheets with exposed (001) facets. Phys Chem Chem Phys 13(19):8915–8923. CrossRefGoogle Scholar
  6. 6.
    Wang XF, Zhan S, Wang Y, Wang P, Yu HG, Yu JG, Hu CZ (2014) Facile synthesis and enhanced visible-light photocatalytic activity of Ag2S nanocrystal-sensitized Ag8W4O16 nanorods. J Colloid Interface Sci 422:30–37. CrossRefGoogle Scholar
  7. 7.
    Yu HG, Liu R, Wang XF, Wang P, Yu JG (2012) Enhanced visible-light photocatalytic activity of Bi2WO6 nanoparticles by Ag2O cocatalyst. Appl Catal B Environ 111:326–333. CrossRefGoogle Scholar
  8. 8.
    Gu YJ, Xing MY, Zhang JL (2014) Synthesis and photocatalytic activity of graphene based doped TiO2 nanocomposites. Appl Surf Sci 319:8–15. CrossRefGoogle Scholar
  9. 9.
    Wang P, Xia Y, Wu PP, Wang XF, Yu HG, Yu JG (2014) Cu(II) as a general cocatalyst for improved visible-light photocatalytic performance of photosensitive Ag-based compounds. J Phys Chem C 118(17):8891–8898. CrossRefGoogle Scholar
  10. 10.
    Aleksandrzak M, Adamski P, Kukulka W, Zielinska B, Mijowska E (2015) Effect of graphene thickness on photocatalytic activity of TiO2–graphene nanocomposites. Appl Surf Sci 331:193–199. CrossRefGoogle Scholar
  11. 11.
    Zheng ZK, Huang BB, Qin XY, Zhang XY, Dai Y, Whangbo MH (2011) Facile in situ synthesis of visible-light plasmonic photocatalysts M@TiO2 (M = Au, Pt, Ag) and evaluation of their photocatalytic oxidation of benzene to phenol. J Mater Chem 21(25):9079–9087. CrossRefGoogle Scholar
  12. 12.
    Seh ZW, Liu SH, Low M, Zhang SY, Liu ZL, Mlayah A, Han MY (2012) Janus Au–TiO2 photocatalysts with strong localization of plasmonic near-fields for efficient visible-light hydrogen generation. Adv Mater 24(17):2310–2314. CrossRefGoogle Scholar
  13. 13.
    Chen Z, Liu SQ, Yang MQ, Xu YJ (2013) Synthesis of uniform CdS nanospheres/graphene hybrid nanocomposites and their application as visible light photocatalyst for selective reduction of nitro organics in water. ACS Appl Mater Interfaces 5(10):4309–4319. CrossRefGoogle Scholar
  14. 14.
    Gobal F, Faraji M (2015) Electrochemical synthesis of reduced graphene oxide/TiO2 nanotubes/Ti for high-performance supercapacitors. Ionics 21(2):525–531. CrossRefGoogle Scholar
  15. 15.
    Han C, Yang MQ, Zhang N, Xu YJ (2014) Enhancing the visible light photocatalytic performance of ternary CdS–(graphene–Pd) nanocomposites via a facile interfacial mediator and co-catalyst strategy. J Mater Chem A 2(45):19156–19166. CrossRefGoogle Scholar
  16. 16.
    Ke F, Wang LH, Zhu JF (2015) Facile fabrication of CdS-metal-organic framework nanocomposites with enhanced visible-light photocatalytic activity for organic transformation. Nano Res 8(6):1834–1846. CrossRefGoogle Scholar
  17. 17.
    Tan LL, Ong WJ, Chai SP, Mohamed AR (2015) Noble metal modified reduced graphene oxide/TiO2 ternary nanostructures for efficient visible-light-driven photoreduction of carbon dioxide into methane. Appl Catal B Environ 166:251–259. CrossRefGoogle Scholar
  18. 18.
    Zhang N, Yang MQ, Tang ZR, Xu YJ (2014) Toward improving the graphene-semiconductor composite photoactivity via the addition of metal ions as generic interfacial mediator. ACS Nano 8(1):623–633. CrossRefGoogle Scholar
  19. 19.
    Cui Y, Zhou D, Sui ZY, Han BH (2015) Sonochemical synthesis of graphene oxide-wrapped gold nanoparticles hybrid materials: visible light photocatalytic activity. Chin J Chem 33(1):119–124. CrossRefGoogle Scholar
  20. 20.
    Challagulla S, Tarafder K, Ganesan R, Roy S (2017) Structure sensitive photocatalytic reduction of nitroarenes over TiO2. Sci Rep 7(1):8783. CrossRefGoogle Scholar
  21. 21.
    Soman B, Challagulla S, Payra S, Dinda S, Roy S (2017) Surface morphology and active sites of TiO2 for photoassisted catalysis. Res Chem Intermed 44(4):2261–2273. CrossRefGoogle Scholar
  22. 22.
    Challagulla S, Payra S, Bajaj M, Roy S (2019) Role of synthesis of upconversion nanoparticles towards surface modification and photocatalysis. Bull Mater Sci 42(3):102. CrossRefGoogle Scholar
  23. 23.
    Payra S, Challagulla S, Bobde Y, Chakraborty C, Ghosh B, Roy S (2019) Probing the photo- and electro-catalytic degradation mechanism of methylene blue dye over ZIF-derived ZnO. J Hazard Mater 373:377–388. CrossRefGoogle Scholar
  24. 24.
    Oh J, Lee JH, Koo JC, Choi HR, Lee Y, Kim T, Luong ND, Nam JD (2010) Graphene oxide porous paper from amine-functionalized poly(glycidyl methacrylate)/graphene oxide core-shell microspheres. J Mater Chem 20(41):9200–9204. CrossRefGoogle Scholar
  25. 25.
    Xu Y, Mo Y, Tian J, Wang P, Yu H, Yu J (2016) The synergistic effect of graphitic N and pyrrolic N for the enhanced photocatalytic performance of nitrogen-doped graphene/TiO2 nanocomposites. Appl Catal B 181:810–817. CrossRefGoogle Scholar
  26. 26.
    Zhang JP, Liao JJ, Yang F, Xu M, Lin SW (2017) Regulation of the electroanalytical performance of ultrathin titanium dioxide nanosheets toward lead ions by non-metal doping. Nanomaterials 7(10):327. CrossRefGoogle Scholar
  27. 27.
    Zheng X, Zhang JC, Peng LL, Yang XY, Cao WL (2011) The effects of electronic structure of non-metallic doped TiO2 anode and co-sensitization on the performance of dye-sensitized solar cells. J Mater Sci 46(15):5071–5078. CrossRefGoogle Scholar
  28. 28.
    Liu P, Huang Y, Yan J, Zhao Y (2016) Magnetic graphene@PANI@porous TiO2 ternary composites for high-performance electromagnetic wave absorption. J Mater Chem C 4(26):6362–6370. CrossRefGoogle Scholar
  29. 29.
    Liu P, Zhang Y, Yan J, Huang Y, Xia L, Guang Z (2019) Synthesis of lightweight N-doped graphene foams with open reticular structure for high-efficiency electromagnetic wave absorption. Chem Eng J 368:285–298. CrossRefGoogle Scholar
  30. 30.
    Wang J, Tafen DN, Lewis JP, Hong Z, Manivannan A, Zhi M, Li M, Wu N (2009) Origin of photocatalytic activity of nitrogen-doped TiO2 nanobelts. J Am Chem Soc 131(34):12290–12297CrossRefGoogle Scholar
  31. 31.
    Liu B, Chen HM, Liu C, Andrews SC, Hahn C, Yang P (2013) Large-scale synthesis of transition-metal-doped TiO2 nanowires with controllable overpotential. J Am Chem Soc 135(27):9995CrossRefGoogle Scholar
  32. 32.
    Lü X, Yang W, Quan Z, Lin T, Bai L, Wang L, Huang F, Zhao Y (2014) Enhanced electron transport in Nb-doped TiO2 nanoparticles via pressure-induced phase transitions. J Am Chem Soc 136(1):419CrossRefGoogle Scholar
  33. 33.
    Mousa MA, Khairy M, Mohamed HM (2018) Dye-sensitized solar cells based on an N-doped TiO2 and TiO2–graphene composite electrode. J Electron Mater 47(10):6241–6250. CrossRefGoogle Scholar
  34. 34.
    Sun R, Huang W, Zhang Q, Hong J-m (2018) Facilely prepared N-doped graphene/Pt/TiO2 as an efficient anode for acetaminophen degradation. Catal Lett 148(8):2418–2431. CrossRefGoogle Scholar
  35. 35.
    Zou Y, Zhang Z, Zhong W, Yang W (2018) Hydrothermal direct synthesis of polyaniline, graphene/polyaniline and N-doped graphene/polyaniline hydrogels for high performance flexible supercapacitors. J Mater Chem A 6(19):9245–9256. CrossRefGoogle Scholar
  36. 36.
    Yang KS, Dai Y, Huang BB (2007) Study of the nitrogen concentration influence on N-doped TiO2 anatase from first-principles calculations. J Phys Chem C 111(32):12086–12090. CrossRefGoogle Scholar
  37. 37.
    Harb M (2013) Screened Coulomb hybrid DFT study on electronic structure and optical properties of anionic and cationic Te-doped anatase TiO2. J Phys Chem C 117(25):12942–12948. CrossRefGoogle Scholar
  38. 38.
    Zhang M, Yin K, Hood ZD, Bi Z, Bridges CA, Dai S, Meng YS, Paranthaman MP, Chi M (2017) In situ TEM observation of the electrochemical lithiation of N-doped anatase TiO2 nanotubes as anodes for lithium-ion batteries. J Mater Chem A 5(6):20651–20657CrossRefGoogle Scholar
  39. 39.
    Pan X, Liang X, Yao L, Wang X, Jing Y, Ma J, Fei Y, Chen L, Mi L (2017) Study of the photodynamic activity of N-doped TiO2 nanoparticles conjugated with aluminum phthalocyanine. Nanomaterials 7(10):338CrossRefGoogle Scholar
  40. 40.
    Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Alemany LB, Lu W, Tour JM (2010) Improved synthesis of graphene oxide. ACS Nano 4(8):4806CrossRefGoogle Scholar
  41. 41.
    Xu J, Wang L, Cao X (2016) Polymer supported graphene–CdS composite catalyst with enhanced photocatalytic hydrogen production from water splitting under visible light. Chem Eng J 283:816–825CrossRefGoogle Scholar
  42. 42.
    Mu HY, Wan JF, Wu YW, Xu J, Wang L, Cao XJ (2018) Novel polymer supported graphene and molybdenum sulfide as highly efficient cocatalyst for photocatalytic hydrogen evolution. Int J Hydrog Energy 43(39):18105–18114. CrossRefGoogle Scholar
  43. 43.
    Li Y, Li X, Li J, Yin J (2006) Photocatalytic degradation of methyl orange by TiO2-coated activated carbon and kinetic study. Water Res 40(6):1119–1126. CrossRefGoogle Scholar
  44. 44.
    Stadler R, Wolf W, Podloucky R, Kresse G, Furthmüller J, Hafner J (1996) Ab initio calculations of the cohesive, elastic, and dynamical properties of CoSi2 by pseudopotential and all-electron techniques. Phys Rev B Condens Matter 54(3):1729–1734CrossRefGoogle Scholar
  45. 45.
    Kresse G, Hafner J (1993) Ab initio molecular dynamics for liquid metals. Phys Rev B Condens Matter 48(17):13115–13118CrossRefGoogle Scholar
  46. 46.
    Perdew JP, Burke K, Ernzerhof M (1998) Erratum: generalized gradient approximation made simple [Phys. Rev. Lett. 77, 3865 (1996)]. Phys Rev Lett 77(18):3865–3868CrossRefGoogle Scholar
  47. 47.
    Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59(3):1758–1775CrossRefGoogle Scholar
  48. 48.
    Dudarev SL, Botton GA, Savrasov SY, Humphreys CJ, Sutton AP (1998) Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA + U study. Phys Rev B 57(3):1505–1509CrossRefGoogle Scholar
  49. 49.
    Ambrosch-Draxl C, Sofo JO (2006) Linear optical properties of solids within the full-potential linearized augmented planewave method. Comput Phys Commun 175(1):1–14CrossRefGoogle Scholar
  50. 50.
    Long R (2013) Electronic structure of semiconducting and metallic tubes in TiO2/carbon nanotube heterojunctions: density functional theory calculations. J Phys Chem Lett 4(8):1340–1346. CrossRefGoogle Scholar
  51. 51.
    Challagulla S, Tarafder K, Ganesan R, Roy S (2017) All that Glitters Is Not Gold: a probe into photocatalytic nitrate reduction mechanism over noble metal doped and undoped TiO2. J Phys Chem C 121(49):27406–27416CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Bioreactor Engineering, Department of BioengineeringEast China University of Science and TechnologyShanghaiChina
  2. 2.Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular EngineeringEast China Normal UniversityShanghaiChina

Personalised recommendations