Advertisement

Palladium nanoparticles supported on amine-functionalized alginate foams for hydrogenation of 3-nitrophenol

  • Shengye Wang
  • Yayuan Mo
  • Thierry Vincent
  • Jean-Claude Roux
  • Enrique Rodríguez-Castellón
  • Catherine Faur
  • Eric GuibalEmail author
Chemical routes to materials
  • 16 Downloads

Abstract

A new material, consisting of alginate–polyethyleneimine (AP) foam, with high percolating properties has been designed for palladium recovery in fixed-bed reactor. The foam, having high affinity for Pd(II), can be also used for manufacturing heterogeneous hydrogenation catalyst. SEM–EDX and TEM analyses were performed to determine the structure of the foams and the distribution of Pd nanoparticles (after metal reduction). Metal-sorbent interactions and oxidation state of Pd are characterized by XPS. Pd(0)-bearing foams are investigated for the hydrogenation of 3-nitrophenol (3-NP) using HCOOH as the hydrogen donor. The maximum sorption capacity of Pd(II) by AP foams reaches up to 224 mg g−1. The water flux (under water-depth pressure of 6 mbar) reaches 24.8 mL cm−2 min−1 (superficial flow velocity: 14.9 m h−1). The foams are remarkably stable: The mass loss under strong shaking for 2 days does not exceed 3%. For catalytic application, Pd loading conditions were optimized (flow rate, metal concentration) to reach 101 mg Pd g−1 (97% metal removal). Under these conditions, Pd overloading and nanoparticles aggregation can be minimized. The catalytic hydrogenation of 3-nitrophenol (using formic acid as the hydrogen donor) was optimum for a HCOOH/3-NP molar ratio close to 160 (pH between 3 and 4). High flow rates minimize diffusion effects; the apparent rate constant (for pseudo-first-order rate equation) reaches 9.7 × 10−3 s−1. The reuse of the foams over 30 cycles shows the long-term stability of catalytic activity. The test on continuous (one-pass) mode shows a progressive poisoning of the catalyst. However, a simple washing with water is sufficient for recovering catalytic activity.

Notes

Acknowledgements

S. Wang (CSC, Grant No. 20156660002) and Y. Mo (CSC, Grant No. 201708450080) acknowledge the China Scholarship Council for providing PhD fellowship. E. Rodríguez-Castellón thanks to project RTI2018-099668-B-C22 (Ministerio de Ciencia, Innovación y Universidades of Spain) project UMA18-FEDERJA-126 of Junta de Andalucía (Spain) and FEDER fund.

Supplementary material

10853_2019_4099_MOESM1_ESM.docx (2.1 mb)
Supplementary material 1 (DOCX 2176 kb)

References

  1. 1.
    Gu J, Hu CS, Zhang WW, Dichiara AB (2018) Reagentless preparation of shape memory cellulose nanofibril aerogels decorated with Pd nanoparticles and their application in dye discoloration. Appl Catal B 237:482–490CrossRefGoogle Scholar
  2. 2.
    Islam M, Mondal P, Roy AS, Tuhina K (2010) Catalytic hydrogenation of various organic substrates using a reusable polymer-anchored palladium(II) complex. J Mater Sci 45:2484–2493.  https://doi.org/10.1007/s10853-010-4220-2 CrossRefGoogle Scholar
  3. 3.
    Cardenas-Lizana F, Keane MA (2013) The development of gold catalysts for use in hydrogenation reactions. J Mater Sci 48:543–564.  https://doi.org/10.1007/s10853-012-6766-7 CrossRefGoogle Scholar
  4. 4.
    Sogukomerogullari HG, Karatas Y, Celebi M, Gulcan M, Sonmez M, Zahmakiran M (2019) Palladium nanoparticles decorated on amine functionalized graphene nanosheets as excellent nanocatalyst for the hydrogenation of nitrophenols to aminophenol counterparts. J Hazard Mater 369:96–107CrossRefGoogle Scholar
  5. 5.
    Xia J, Zhang L, Fu Y, He G, Sun X, Wang X (2018) Nitrogen-doped carbon black supported NiCo2S4 catalyst for hydrogenation of nitrophenols under mild conditions. J Mater Sci 53:4467–4481.  https://doi.org/10.1007/s10853-017-1852-5 CrossRefGoogle Scholar
  6. 6.
    Zhang YM, Cao YH, Chen D, Cui PL, Yang J (2018) Ionic liquid assisted synthesis of palladium nanoclusters for highly efficient formaldehyde oxidation. Electrochim Acta 269:38–44CrossRefGoogle Scholar
  7. 7.
    Wołowicz A, Hubicki Z (2014) Adsorption characteristics of noble metals on the strongly basic anion exchanger Purolite A-400TL. J Mater Sci 49:6191–6202.  https://doi.org/10.1007/s10853-014-8333-x CrossRefGoogle Scholar
  8. 8.
    Zhang Z, Sebe G, Wang XS, Tam KC (2018) Gold nanoparticles stabilized by poly(4-vinylpyridine) grafted cellulose nanocrystals as efficient and recyclable catalysts. Carbohydr Polym 182:61–68CrossRefGoogle Scholar
  9. 9.
    Li J, Bai X (2016) Ultrasonic synthesis of supported palladium nanoparticles for room-temperature Suzuki-Miyaura coupling. J Mater Sci 51:9108–9122.  https://doi.org/10.1007/s10853-016-0164-5 CrossRefGoogle Scholar
  10. 10.
    Deng C, Li Y, Sun W, Liu F, Zhang Y, Qian H (2019) Supported AuPd nanoparticles with high catalytic activity and excellent separability based on the magnetic polymer carriers. J Mater Sci 54:11435–11447.  https://doi.org/10.1007/s10853-019-03701-7 CrossRefGoogle Scholar
  11. 11.
    Wang H, Wan Y (2009) Synthesis of ordered mesoporous Pd/carbon catalyst with bimodal pores and its application in water-mediated Ullmann coupling reaction of chlorobenzene. J Mater Sci 44:6553–6562.  https://doi.org/10.1007/s10853-009-3612-7 CrossRefGoogle Scholar
  12. 12.
    Wilson OM, Knecht MR, Garcia-Martinez JC, Crooks RM (2006) Effect of Pd nanoparticle size on the catalytic hydrogenation of allyl alcohol. JACS 128:4510–4511CrossRefGoogle Scholar
  13. 13.
    Gawade AB, Nakhate AV, Yadav GD (2018) Selective synthesis of 2,5-furandicarboxylic acid by oxidation of 5-hydroxymethylfurfural over MnFe2O4 catalyst. Catal Today 309:119–125CrossRefGoogle Scholar
  14. 14.
    Das R, Sypu VS, Paumo HK, Bhaumik M, Maharaj V, Maity A (2019) Silver decorated magnetic nanocomposite (Fe3O4@PPy-MAA/Ag) as highly active catalyst towards reduction of 4-nitrophenol and toxic organic dyes. Appl Catal B 244:546–558CrossRefGoogle Scholar
  15. 15.
    Zhao YQ, Wu ZF, Wang YQ, Yang C, Li YX (2017) Facile fabrication of polystyrene microsphere supported gold-palladium alloy nanoparticles with superior catalytic performance for the reduction of 4-nitrophenol in water. Colloids Surf. A 529:417–424CrossRefGoogle Scholar
  16. 16.
    Palchoudhury S, Lead JR (2014) A facile and cost-effective method for separation of oil-water mixtures using polymer-coated iron oxide nanoparticles. Environ Sci Technol 48:14558–14563CrossRefGoogle Scholar
  17. 17.
    Rosch JG, Winter H, DuRoss AN, Sahay G, Sun C (2019) Inverse-micelle synthesis of doxorubicin-loaded alginate/chitosan nanoparticles and in vitro assessment of breast cancer cytotoxicity. Colloid Interface Sci Commun 28:69–74CrossRefGoogle Scholar
  18. 18.
    Ben Hammouda S, Adhoum N, Monser L (2016) Chemical oxidation of a malodorous compound, indole, using iron entrapped in calcium alginate beads. J Hazard Mater 301:350–361CrossRefGoogle Scholar
  19. 19.
    An B, Lee H, Lee S, Lee SH, Choi JW (2015) Determining the selectivity of divalent metal cations for the carboxyl group of alginate hydrogel beads during competitive sorption. J Hazard Mater 298:11–18CrossRefGoogle Scholar
  20. 20.
    Carvalho AGD, Machado MTD, Barros H, Cazarin CBB, Marostica MR, Hubinger MD (2019) Anthocyanins from jussara (Euterpe edulis Martius) extract carried by calcium alginate beads pre-prepared using ionic gelation. Powder Technol 345:283–291CrossRefGoogle Scholar
  21. 21.
    Zhao J, Zhu YW, He GW et al (2016) Incorporating zwitterionic graphene oxides into sodium alginate membrane for efficient water/alcohol separation. ACS Appl Mater Interfaces 8:2097–2103CrossRefGoogle Scholar
  22. 22.
    Ma YL, Qi PF, Ju JP et al (2019) Gelatin/alginate composite nanofiber membranes for effective and even adsorption of cationic dyes. Compos B 162:671–677CrossRefGoogle Scholar
  23. 23.
    Post W, Jeoffroy E, Garcia SJ, van der Zwaag S (2019) Self-healing glass fiber reinforced polymer composites based on montmorillonite reinforced compartmented alginate fibers. Polym Compos 40:471–480CrossRefGoogle Scholar
  24. 24.
    Eibak LEE, Hegge AB, Rasmussen KE, Pedersen-Bjergaard S, Gjelstad A (2012) Alginate and chitosan foam combined with electromembrane extraction for dried blood spot analysis. Anal Chem 84:8783–8789CrossRefGoogle Scholar
  25. 25.
    Saha S, Pal A, Kundu S, Basu S, Pal T (2010) Photochemical green synthesis of calcium-alginate-stabilized Ag and Au nanoparticles and their catalytic application to 4-nitrophenol reduction. Langmuir 26:2885–2893CrossRefGoogle Scholar
  26. 26.
    Kuang Y, Du JH, Zhou RB, Chen ZL, Megharaj M, Naidu R (2015) Calcium alginate encapsulated Ni/Fe nanoparticles beads for simultaneous removal of Cu(II) and monochlorobenzene. J Colloid Interface Sci 447:85–91CrossRefGoogle Scholar
  27. 27.
    Chtchigrovsky M, Lin Y, Ouchaou K et al (2012) Dramatic effect of the gelling cation on the catalytic performances of alginate-supported palladium nanoparticles for the Suzuki–Miyaura reaction. Chem Mater 24:1505–1510CrossRefGoogle Scholar
  28. 28.
    Kumar M, Vijayakumar G, Tamilarasan R (2019) Synthesis, characterization and experimental studies of nano Zn–Al–Fe3O4 blended alginate/Ca beads for the adsorption of rhodamin B. J Polym Environ 27:106–117CrossRefGoogle Scholar
  29. 29.
    Wang S, Vincent T, Faur C, Guibal E (2018) A comparison of palladium sorption using polyethylenimine impregnated alginate-based and carrageenan-based algal beads. Appl Sci Basel 8:264CrossRefGoogle Scholar
  30. 30.
    Loges B, Boddien A, Junge H, Beller M (2008) Controlled generation of hydrogen from formic acid amine adducts at room temperature and application in H2/O2 fuel cells. Angew Chem Int Ed 47:3962–3965CrossRefGoogle Scholar
  31. 31.
    Gowda DC, Gowda S (2000) Formic acid with 10% palladium on carbon: a reagent for selective reduction of aromatic nitro compounds. Indian J Chem Sect B 39:709–711Google Scholar
  32. 32.
    Zhang Y, He X, Ouyang J, Yang H (2013) Palladium nanoparticles deposited on silanized halloysite nanotubes: synthesis, characterization and enhanced catalytic property. Sci Rep 3:2948CrossRefGoogle Scholar
  33. 33.
    Vincent T, Guibal E (2003) Chitosan-supported palladium catalyst. 3. Influence of experimental parameters on nitrophenol degradation. Langmuir 19:8475–8483CrossRefGoogle Scholar
  34. 34.
    Javaid R, Kawasaki S-i, Suzuki A, Suzuki TM (2013) Simple and rapid hydrogenation of p-nitrophenol with aqueous formic acid in catalytic flow reactors, Beilstein. J Org Chem 9:1156–1163Google Scholar
  35. 35.
    Vincent T, Krys P, Jouannin C, Gaumont A-C, Dez I, Guibal E (2013) Hybrid macroporous Pd catalytic discs for 4-nitroaniline hydrogenation: contribution of the alginate-tetraalkylphosphonium ionic liquid support. J Organomet Chem 723:90–97CrossRefGoogle Scholar
  36. 36.
    Wang S, Vincent T, Faur C, Rodriguez-Castellon E, Guibal E (2019) A new method for incorporating polyethyleneimine (PEI) in algal beads: high stability as sorbent for palladium recovery and supported catalyst for nitrophenol hydrogenation. Mater Chem Phys 221:144–155CrossRefGoogle Scholar
  37. 37.
    Perez-Coronado AM, Calvo L, Alonso-Morales N, Heras F, Rodriguez JJ, Gilarranz MA (2016) Multiple approaches to control and assess the size of Pd nanoparticles synthesized via water-in-oil microemulsion. Colloids Surf A 497:28–34CrossRefGoogle Scholar
  38. 38.
    Simonsen SB, Chorkendorff I, Dahl S, Skoglundh M, Helveg S (2016) Coarsening of Pd nanoparticles in an oxidizing atmosphere studied by in situ TEM. Surf Sci 648:278–283CrossRefGoogle Scholar
  39. 39.
    Zhang C, Leng Y, Jiang P, Li J, Du S (2017) Immobilizing palladium nanoparticles on nitrogen-doped carbon for promotion of formic acid dehydrogenation and alkene hydrogenation. Chem Sel 2:5469–5474Google Scholar
  40. 40.
    Kim Y-H, Ogata T, Nakano Y (2007) Kinetic analysis of palladium(II) adsorption process on condensed-tannin gel based on redox reaction models. Water Res 41:3043–3050CrossRefGoogle Scholar
  41. 41.
    Wang S, Vincent T, Roux J-C, Faur C, Guibal E (2017) Pd(II) and Pt(IV) sorption using alginate and algal-based beads. Chem Eng J 313:567–579CrossRefGoogle Scholar
  42. 42.
    Miller KJ, Kitagawa TT, Abu-Omar MM (2001) Kinetics and mechanisms of methyl vinyl ketone hydroalkoxylation catalyzed by palladium(II) complexes. Organometallics 20:4403–4412CrossRefGoogle Scholar
  43. 43.
    Baran T, Sargin I, Mentes A, Kaya M (2016) Exceptionally high turnover frequencies recorded for a new chitosan-based palladium(II) catalyst. Appl Catal A 523:12–20CrossRefGoogle Scholar
  44. 44.
    Jadbabaei N, Slobodjian RJ, Shuai D, Zhang H (2017) Catalytic reduction of 4-nitrophenol by palladium-resin composites. Appl Catal A 543:209–217CrossRefGoogle Scholar
  45. 45.
    Guibal E, Cambe S, Bayle S, Taulemesse J-M, Vincent T (2013) Silver/chitosan/cellulose fibers foam composites: from synthesis to antibacterial properties. J Colloid Interface Sci 393:411–420CrossRefGoogle Scholar
  46. 46.
    Wang S, Vincent T, Faur C, Guibal E (2017) Algal foams applied in fixed-bed process for lead(II) removal using recirculation or one-pass modes. Mar Drugs 15:315CrossRefGoogle Scholar
  47. 47.
    Willner I, Eichen Y, Frank AJ, Fox MA (1993) Photinduced electron-transfer processes using organized redeox-functionalized bipyridinium polyethyleneimine TiO2 colloids and particulate assemblies. J Phys Chem 97:7264–7271CrossRefGoogle Scholar
  48. 48.
    Harmsen JMA, Jelemensky L, Van Andel-Scheffer PJM, Kuster BFM, Marin GB (1997) Kinetic modeling for wet air oxidation of formic acid on a carbon supported platinum catalyst. Appl Catal A 165:499–509CrossRefGoogle Scholar
  49. 49.
    Goyal A, Bansal S, Singhal S (2014) Facile reduction of nitrophenols: comparative catalytic efficiency of MFe2O4 (M = Ni, Cu, Zn) nano ferrites. Int J Hydrog Energy 39:4895–4908CrossRefGoogle Scholar
  50. 50.
    Fu Y, Qin L, Huang D et al (2019) Chitosan functionalized activated coke for Au nanoparticles anchoring: Green synthesis and catalytic activities in hydrogenation of nitrophenols and azo dyes. Appl Catal B 255:117740CrossRefGoogle Scholar
  51. 51.
    Qin L, Zeng Z, Zeng G et al (2019) Cooperative catalytic performance of bimetallic Ni–Au nanocatalyst for highly efficient hydrogenation of nitroaromatics and corresponding mechanism insight. Appl Catal B 259:118035CrossRefGoogle Scholar
  52. 52.
    Zhang X, Qu Y, Shen W et al (2016) Biogenic synthesis of gold nanoparticles by yeast Magnusiomyces ingens LH-F1 for catalytic reduction of nitrophenols. Colloids Surf A 497:280–285CrossRefGoogle Scholar
  53. 53.
    Meng YX, Gao HY, Li S, Chai F, Chen LH (2019) Facile fabrication of bimetallic Cu–Ag binary hybrid nanoparticles and their application in catalysis. New J Chem 43:6772–6780CrossRefGoogle Scholar
  54. 54.
    Nguyen TB, Huang CP, Doong R-A (2019) Enhanced catalytic reduction of nitrophenols by sodium borohydride over highly recyclable Au@graphitic carbon nitride nanocomposites. Appl Catal B 240:337–347CrossRefGoogle Scholar
  55. 55.
    Morere J, Tenorio MJ, Torralvo MJ, Pando C, Renuncio JAR, Cabanas A (2011) Deposition of Pd into mesoporous silica SBA-15 using supercritical carbon dioxide. J Supercrit Fluids 56:213–222CrossRefGoogle Scholar
  56. 56.
    Ghosh SK, Mandal M, Kundu S, Nath S, Pal T (2004) Bimetallic Pt-Ni nanoparticles can catalyze reduction of aromatic nitro compounds by sodium borohydride in aqueous solution. Appl. Catal. A 268:61–66CrossRefGoogle Scholar
  57. 57.
    Lu Y, Mei Y, Drechsler M, Ballauff M (2006) Thermosensitive core-shell particles as carriers for Ag nanoparticles: modulating the catalytic activity by a phase transition in networks. Angew Chem Int Ed 45:813–816CrossRefGoogle Scholar
  58. 58.
    Xue Y, Lu X, Bian X, Lei J, Wang C (2012) Facile synthesis of highly dispersed palladium/polypyrrole nanocapsules for catalytic reduction of p-nitrophenol. J Colloid Interface Sci 379:89–93CrossRefGoogle Scholar
  59. 59.
    Le X, Dong Z, Liu Y et al (2014) Palladium nanoparticles immobilized on core-shell magnetic fibers as a highly efficient and recyclable heterogeneous catalyst for the reduction of 4-nitrophenol and Suzuki coupling reactions. J Mater Chem A 2:19696–19706CrossRefGoogle Scholar
  60. 60.
    Le X, Dong Z, Li X, Zhang W, Minhdong L, Ma J (2015) Fibrous nano-silica supported palladium nanoparticles: an efficient catalyst for the reduction of 4-nitrophenol and hydrodechlorination of 4-chlorophenol under mild conditions. Catal Commun 59:21–25CrossRefGoogle Scholar
  61. 61.
    Mei Y, Lu Y, Polzer F, Ballauff M, Drechsler M (2007) Catalytic activity of palladium nanoparticles encapsulated in spherical polyelectrolyte brushes and core-shell microgels. Chem Mater 19:1062–1069CrossRefGoogle Scholar
  62. 62.
    Wang H-Q, Wei X, Wang K-X, Chen J-S (2012) Controlled synthesis of magnetic Pd/Fe3O4 spheres via an ethylenediamine-assisted route. Dalton Trans 41:3204–3208CrossRefGoogle Scholar
  63. 63.
    Fu G, Jiang X, Ding L et al (2013) Green synthesis and catalytic properties of polyallylamine functionalized tetrahedral palladium nanocrystals. Appl. Catal. B 138:167–174CrossRefGoogle Scholar
  64. 64.
    Dong W, Cheng S, Feng C, Shang N, Gao S, Wang C (2017) Fabrication of highly dispersed Pd nanoparticles supported on reduced graphene oxide for catalytic reduction of 4-nitrophenol. Catal Commun 90:70–74CrossRefGoogle Scholar
  65. 65.
    Wang Z, Xu C, Gao G, Li X (2014) Facile synthesis of well-dispersed Pd-graphene nanohybrids and their catalytic properties in 4-nitrophenol reduction. RSC Adv 4:13644–13651CrossRefGoogle Scholar
  66. 66.
    Nasrollahzadeh M, Sajadi SM, Rostami-Vartooni A, Bagherzadeh M (2015) Green synthesis of Pd/CuO nanoparticles by Theobroma cacao L. seeds extract and their catalytic performance for the reduction of 4-nitrophenol and phosphine-free Heck coupling reaction under aerobic conditions. J Colloid Interface Sci 448:106–113CrossRefGoogle Scholar
  67. 67.
    Ruppert AM, Jedrzejczyk M, Potrzebowska N et al (2018) Supported gold-nickel nano-alloy as a highly efficient catalyst in levulinic acid hydrogenation with formic acid as an internal hydrogen source. Catal Sci, Technol, p 8Google Scholar
  68. 68.
    Deng L, Zhao Y, Li J, Fu Y, Liao B, Guo Q-X (2010) Conversion of levulinic acid and formic acid into gamma-valerolactone over heterogeneous catalysts. Chemsuschem 3:1172–1175CrossRefGoogle Scholar
  69. 69.
    Yoo JS, Zhao Z-J, Norskov JK, Studt F (2015) Effect of boron modifications of palladium catalysts for the production of hydrogen from formic acid. ACS Catal 5:6579–6586CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.C2MA, IMT Mines AlesUniv MontpellierAlesFrance
  2. 2.Department of Environmental Engineering, College of Chemistry and Environmental EngineeringShenzhen UniversityShenzhenPeople’s Republic of China
  3. 3.Departamento de Química Inorgánica, Facultad de CienciasUniversidad de MálagaMálagaSpain
  4. 4.IEM, Institut Européen des MembranesUniv Montpellier, CNRS, ENSCMMontpellierFrance

Personalised recommendations