Advertisement

Journal of Materials Science

, Volume 55, Issue 5, pp 2129–2138 | Cite as

Tuning the morphology and phase of MoSe2 by using a mixed solvent of water and dimethyl formamide and its enhanced electrocatalytic activity for hydrogen evolution reaction

  • Jinzhu WuEmail author
  • Beibei Li
  • Yanbin Shao
  • Xiaohong WuEmail author
  • Yanchun SunEmail author
Energy materials
  • 94 Downloads

Abstract

Scarce active sites and poor electrical conductivity of molybdenum diselenide (MoSe2) impede its practical application as an electrocatalyst for hydrogen evolution reaction (HER). Addressing these problems, herein, tailoring suitable morphology and introducing metallic 1T phase for the original semiconductive 2H-MoSe2 are adopted. Eventually, the edge-rich 2H/1T-MoSe2 nanoflowers with enlarged interlay spacing were synthesized by using a solvothermal method, where a mixed solvent of water and dimethyl formamide plays a dominating role in regulating the growth of the MoSe2. The resulting MoSe2 electrocatalyst shows enhanced HER activity in 0.5 M H2SO4 in terms of a low overpotential of 250 mV (vs. RHE) at a high current density of 100 mA cm−2, an acceptable Tafel slope of 62 mV dec−1 and excellent stability after a 72-h HER process. This work provides an effective strategy in the development of the high-performance MoSe2-based electrocatalysts for the HER and other energy-related applications.

Notes

Funding

This research was funded by the National Natural Science Foundation of China (Grant No. 51671074).

Compliance with ethical standards

Conflict of interest

This contribution has been approved by all the authors. The authors declare that they have no conflict of interest.

Supplementary material

10853_2019_4084_MOESM1_ESM.docx (1.7 mb)
Supplementary material 1 (DOCX 1718 kb)

References

  1. 1.
    Dresselhaus M, Thomas I (2001) Alternative energy technologies. Nature 414:332CrossRefGoogle Scholar
  2. 2.
    Chu Steven, Majumdar Arun (2012) Opportunities and challenges for a sustainable energy future. Nature 488:294–303CrossRefGoogle Scholar
  3. 3.
    Zhang G, Zhang M, Ye X, Qiu X, Lin S, Wang X (2014) Iodine modified carbon nitride semiconductors as visible light photocatalysts for hydrogen evolution. Adv Mater 26:805CrossRefGoogle Scholar
  4. 4.
    Turner JA (2004) Sustainable hydrogen production. Science 305:972–974CrossRefGoogle Scholar
  5. 5.
    Chia Xinyi, Pumera Martin (2018) Characteristics and performance of two-dimensional materials for electrocatalysis. Nat Catal 1:909–921CrossRefGoogle Scholar
  6. 6.
    Lukowski MA, Daniel AS, Meng F, Forticaux A, Li L, Jin S (2013) Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J Am Chem Soc 135:10274CrossRefGoogle Scholar
  7. 7.
    Ali Efelthari (2017) Molybdenum diselenide (MoSe2) for energy storage, catalysis, and optoelectronics. Appl Mater Today 8:1–17CrossRefGoogle Scholar
  8. 8.
    Amiinu Ibrahim Saana, Zonghua Pu, Liu Xiaobo, Owusu Kwadwo Asare, Monestel Hellen Gabriela Rivera, Boakye Felix Ofori, Zhang Haining, Shichun Mu (2017) Multifunctional Mo–N/C@MoS2 electrocatalysts for HER, OER, ORR, and Zn–Air batteries. Adv Funct Mater 27:1702300CrossRefGoogle Scholar
  9. 9.
    Wang Pengyan, Zonghua Pu, Li Wenqiang, Zhu Jiawei, Zhang Chengtian, Zhao Yufeng, Shichun Mu (2019) Coupling NiSe2-Ni2P heterostructure nanowrinkles for highly efficient overall water splitting. J Catal 377:600–608CrossRefGoogle Scholar
  10. 10.
    Zonghua Pu, Amiinu Ibrahim Saana, Gao Fangliang, Zhenzhu Xu, Zhang Chengtian, Li Wenqiang, Li Guoqiang, Shichun Mu (2018) Efficient strategy for significantly decreasing overpotentials of hydrogen generation via oxidizing small molecules at flexible bifunctional CoSe electrodes. J Power Sources 401:238–244CrossRefGoogle Scholar
  11. 11.
    Huang Y, Lu H, Gu H, Fu J, Mo S, Wei C, Miao Y-E, Liu T (2015) A CNT@MoSe2 hybrid catalyst for efficient and stable hydrogen evolution. Nanoscale 7:18595CrossRefGoogle Scholar
  12. 12.
    Ambrosi Adriano, Sofer Zdeněk, Pumera Martin (2015) 2H-1T phase transition and hydrogen evolution activity of MoS2, MoSe2, WS2 and WSe2 strongly depends on the MX2 composition. Chem Commun 51:8450CrossRefGoogle Scholar
  13. 13.
    Zhang Long, Sun Lan, Huang Yuhong, Sun Yunjin, Hu Tingwei, Xu Kewei, Ma Fei (2017) Hydrothermal synthesis of N-doped RGO/MoSe2 composites and enhanced electro-catalytic hydrogen evolution. J Mater Sci 52:13561–13571CrossRefGoogle Scholar
  14. 14.
    Jiang M, Zhang J, Wu M, Jian W, Xue H, Ng T-W, Lee T-W, Xu J (2016) Synthesis of 1T-MoSe2 ultrathin nanosheets with an expanded interlayer spacing of 1.17 nm for efficient hydrogen evolution reaction. J Mater Chem A 4:14949CrossRefGoogle Scholar
  15. 15.
    Shengjue Deng Yu, Zhong Yinxiang Zeng, Wang Yadong, Yao Zhujun, Yang Fan, Lin Shiwei, Wang Xiuli, Xihong Lu, Xia Xinhui, Jiangping Tu (2017) Directional construction of vertical nitrogen-doped 1T-2H MoSe2/graphene shell/core nanoflake arrays for efficient hydrogen evolution reaction. Adv Mater 29:1700748CrossRefGoogle Scholar
  16. 16.
    Xie J, Zhang J, Li S, Grote F, Zhang X, Zhang H, Wang R, Lei Y, Pan B, Xie Y (2013) MoS2 nanosheets supported on 3D graphene aerogel as a highly efficient catalyst for hydrogen evolution. J Am Chem Soc 135:17881CrossRefGoogle Scholar
  17. 17.
    Wang Xinqiang, Zheng Binjie, Bo Yu, Wang Bo, Hou Wenqiang, Zhang Wanli, Chen Yuanfu (2018) In situ synthesis of hierarchical MoSe2–CoSe2 nanotubes as an efficient electrocatalyst for the hydrogen evolution reaction in both acidic and alkaline media. J Mater Chem A 6:7842CrossRefGoogle Scholar
  18. 18.
    Chen Z, Cummins D, Reinecke BN, Clark E, Sunkara MK, Jaramillo TF (2011) Engineering cobalt phosphide (CoP) thin film catalysts for enhanced hydrogen evolution activity on silicon photocathodes. Nano Lett 11:4168–4175CrossRefGoogle Scholar
  19. 19.
    Kibsgaard J, Jaramillo TF (2014) Molybdenum phosphosulfide: an active, acid-stable, earth-abundant catalyst for the hydrogen evolution reaction. Angew Chem Int Ed 53:14433–14437CrossRefGoogle Scholar
  20. 20.
    Ham HT, Choi YS, Chung IJ (2005) An explanation of dispersion states of single-walled carbon nanotubes in solvents and aqueous surfactant solutions using solubility parameters. J Colloid Interface Sci 286:216–223CrossRefGoogle Scholar
  21. 21.
    Cunningham Graeme, Lotya Mustafa, Cucinotta Clotilde S, Sanvito Stefano, Bergin Shane D, Menzel Robert, Shaffer Milo S P, Coleman Jonathan N (2012) Solvent exfoliation of transition metal dichalcogenides: dispersibility of exfoliated nanosheets varies only weakly between compounds. ACS Nano 6:3468–3480CrossRefGoogle Scholar
  22. 22.
    Dai Chu, Zhou Zhaoxin, Tian Chen, Li Yong, Yang Chao, Gao Xueyun, Tian Xike (2017) Large-scale synthesis of graphene-like MoSe2 nanosheets for efficient hydrogen evolution reaction. J Phys Chem C 121:1974–1981CrossRefGoogle Scholar
  23. 23.
    Zhou Jiang, Fang Guozhao, Pan Anqiang, Liang Shuquan (2016) Oxygen-incorporated MoS2 nanosheets with expanded interlayers for hydrogen evolution reaction and pseudocapacitor applications. ACS Appl Mater Interfaces 8:33681–33689CrossRefGoogle Scholar
  24. 24.
    Yin Y, Zhang YM, Gao TL, Yao T, Zhang XH, Han JC, Wang XJ, Zhang ZH, Xu P, Zhang P (2017) Synergistic phase and disorder engineering in 1T-MoSe2 nanosheets for enhanced hydrogen-evolution reaction. Adv Mater 29:1700311CrossRefGoogle Scholar
  25. 25.
    Peng Xu, Peng Lele, Changzheng Wu, Xie Yi (2014) Two dimensional nanomaterials for flexible supercapacitors. Chem Soc Rev 43:3303CrossRefGoogle Scholar
  26. 26.
    Salanne M, Rotenberg B, Naoi K, Kaneko K, Taberna P-L, Grey CP, Dunn B, Simon P (2016) Efficient storage mechanisms for building better supercapacitors. Nat Energy 1:1–10CrossRefGoogle Scholar
  27. 27.
    Hadland EC, Göhler F, Mitchson G, Fender SS, Schmidt C, Zahn DRT, Seyller T, Johnson DC (2019) Synthesis and properties of (BiSe)0.97MoSe2: a heterostructure containing both 2H-MoSe2 and 1T-MoSe2. Chem Mater 31:5824–5831CrossRefGoogle Scholar
  28. 28.
    Jinzhu Wu, Lixin Du, Shao Yanbin, Xiaohong Wu (2019) Silicon quantum dots-assistant synthesis of mesoporous MoS2 3D frameworks (SiQDs-MoS2) with 1T and 2H phases for hydrogen evolution reaction. Mater Lett 236:124–127CrossRefGoogle Scholar
  29. 29.
    Zhang X, Tan QH, Wu JB, Shi W, Tan PH (2016) Review on the Raman spectroscopy of different types of layered materials. Nanoscale 8:6435–6450CrossRefGoogle Scholar
  30. 30.
    Kim K, Lee JU, Nam D, Cheong H (2016) Davydov splitting and excitonic resonance effects in Raman Spectra of few-layer MoSe2. ACS Nano 10:8113–8120CrossRefGoogle Scholar
  31. 31.
    Zhang X, Han WP, Wu JB, Milana S, Lu Y, Li QQ, Ferrari AC, Tan PH (2013) Raman spectroscopy of shear and layer breathing modes in multilayer MoS2. Phys Rev B Condens Matter Mater Phys 87:115413CrossRefGoogle Scholar
  32. 32.
    Zhang Jingtong, Chen Yalan, Liu Ming, Kun Du, Zhou Yan, Li Yanpeng, Wang Zhaojie, Zhang Jun (2018) 1T@2H-MoSe2 nanosheets directly arrayed on Ti plate: an efficient electrocatalytic electrode for hydrogen evolution reaction. Nano Res 11:4587–4598CrossRefGoogle Scholar
  33. 33.
    Zhang Jingyan, Wang Tongtong, Liu Peitao, Liu Yonggang, Ma Ji, Gao Daqiang (2016) Enhanced catalytic activities of metal-phase-assisted 1T@2H-MoSe2 nanosheets for hydrogen evolution. Electrochim Acta 217:181–186CrossRefGoogle Scholar
  34. 34.
    Gupta U, Naidu BS, Maitra U, Singh A, Shirodkar SN, Waghmare UV, Rao CNR (2014) Characterization of few-layer 1T-MoSe2 and its superior performance in the visible-light induced hydrogen evolution reaction. APL Mater 2:092802CrossRefGoogle Scholar
  35. 35.
    Jinzhu Wu, Feng Yaxiu, Shao Yanbin, Zhou Jia, Xiaohong Wu (2018) Novel SiQDs–MoS2 heterostructures with increasing solar absorption for the photocatalytic degradation of malachite green. J Mater Sci 53:8120–8131.  https://doi.org/10.1007/s10853-018-2120-z CrossRefGoogle Scholar
  36. 36.
    Liu Shuai, Li Mengsi, Wang Changlai, Jiang Peng, Lin Hu, Chen Qianwang (2018) Tuning the electronic structure of se via constructing Rh-MoSe2 nanocomposite to generate high-performance electrocatalysis for hydrogen evolution reaction. ACS Sustain Chem Eng 6:9137–9144CrossRefGoogle Scholar
  37. 37.
    Sha Hu, Jiang Qingqing, Ding Shuoping, Liu Ye, Zuozuo Wu, Huang Zhengxi, Zhou Tengfei, Guo Zaiping, Juncheng Hu (2018) Construction of Hierarchical MoSe2 Hollow Structures and Its Effect on Electrochemical Energy Storage and Conversion. ACS Appl Mater Interfaces 10:25483–25492CrossRefGoogle Scholar
  38. 38.
    Yindong Qu, Medina Henry, Wang Sheng-Wen, Wang Yi-Chung, Chen Chia-Wei, Teng-Yu Su, Manikandan Arumugam, Wang Kuangye, Shih Yu-Chuan, Chang Je-Wei, Kuo Hao-Chung, Lee Chi-Yung, Shih-Yuan Lu, Shen Guozhen, Wang Zhiming M, Chueh Yu-Lun (2016) Wafer scale phase-engineered 1T- and 2H-MoSe2/Mo core-shell 3D-hierarchical nanostructures toward efficient electrocatalytic hydrogen evolution reaction. Adv Mater 28:9831–9838CrossRefGoogle Scholar
  39. 39.
    Tan Chaoliang, Luo Zhimin, Chaturvedi Apoorva, Cai Yongqing, Yonghua Du, Gong Yue, Huang Ying, Lai Zhuangchai, Zhang Xiao, Zheng Lirong, Qi Xiaoying, Goh Min Hao, Wang Jie, Han Shikui, Xue-Jun Wu, Lin Gu, Kloc Christian, Zhang Hua (2018) Preparation of high-percentage 1T-phase transition metal dichalcogenide nanodots for electrochemical hydrogen evolution. Adv Mater 30:1705509CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Materials Chemistry, School of Chemistry and Chemical EngineeringHarbin Institute of TechnologyHarbinPeople’s Republic of China
  2. 2.The Academy of Fundamental and Interdisciplinary SciencesHarbin Institute of TechnologyHarbinPeople’s Republic of China
  3. 3.Chinese Academy of Fishery Sciences, Heilongjiang River Fishery Research InstituteHarbinPeople’s Republic of China

Personalised recommendations