Advertisement

Journal of Materials Science

, Volume 55, Issue 5, pp 1933–1945 | Cite as

Mesoporous TiO2 from poly(N,N-dimethylacrylamide)-b-polystyrene block copolymers for long-term acetaldehyde photodegradation

  • Jonas Billet
  • Stef Vandewalle
  • Mieke Meire
  • Natan Blommaerts
  • Petra Lommens
  • Sammy W. Verbruggen
  • Klaartje De Buysser
  • Filip Du Prez
  • Isabel Van DriesscheEmail author
Chemical routes to materials
  • 21 Downloads

Abstract

Although already some mesoporous (2–50 nm) sol–gel TiO2 synthesis strategies exist, no pore size control beyond the 12 nm range is possible without using specialized organic structure-directing agents synthetized via controlled anionic/radical polymerizations. Here, we present the use of reversible addition–fragmentation chain transfer (RAFT) polymerization as a straightforward and industrial applicable alternative to the existing controlled polymerization methods for structure-directing agent synthesis. Poly(N,N-dimethylacrylamide)-block-polystyrene (PDMA-b-PS) block copolymer, synthesized via RAFT, was chosen as structure-directing agent for the formation of the mesoporous TiO2. Crack-free thin layers TiO2 with tunable pores from 8 to 45 nm could be acquired. For the first time, in a detailed and systematic approach, the influence of the block size and dispersity of the block copolymer is experimentally screened for their influence on the final meso-TiO2 layers. As expected, the mesoporous TiO2 pore sizes showed a clear correlation to the polystyrene block size and the dispersity of the PDMA-b-PS block copolymer. Surprisingly, the dispersity of the polymer was shown not to be affecting the standard deviation of the pores. As a consequence, RAFT could be seen as a viable alternative to the aforementioned controlled polymerization reactions for the synthesis of structure-directing agents enabling the formation of mesoporous pore size-controlled TiO2. To examine the photocatalytic activity of the mesoporous TiO2 thin layers, the degradation of acetaldehyde, a known indoor pollutant, was studied. Even after 3 years of aging, the TiO2 thin layer retained most of its activity.

Notes

Acknowledgements

Ghent University is acknowledged for funding the research presented in this paper. M. Meire and S. W. Verbruggen acknowledge the FWO-Flanders (Fund for Scientific Research-Flanders) for financial support. The authors thank Bernhard De Meyer for the SEC analysis, Hannes Rijckaert for the cross-sectional analysis, Tom Planckaert for BET analysis of the meso-TiO2 powders, Jeroen Kint for the porosi-ellipsometry tests and Frank Driessen for the MALDI-TOF analysis.

Supplementary material

10853_2019_4024_MOESM1_ESM.docx (1.7 mb)
Supplementary material 1 (DOCX 1692 kb)

References

  1. 1.
    Li W, Wu ZX, Wang JX, Elzatahry AA, Zhao DY (2014) A perspective on mesoporous TiO2 materials. Chem Mater 26(1):287–298.  https://doi.org/10.1021/cm4014859 CrossRefGoogle Scholar
  2. 2.
    Yang PD, Zhao DY, Margolese DI, Chmelka BF, Stucky GD (1998) Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks. Nature 396(6707):152–155.  https://doi.org/10.1038/24132 CrossRefGoogle Scholar
  3. 3.
    Taguchi A, Schuth F (2005) Ordered mesoporous materials in catalysis. Microporous Mesoporous Mater 77(1):1–45.  https://doi.org/10.1016/j.micromeso.2004.06.030 CrossRefGoogle Scholar
  4. 4.
    Smarsly B, Grosso D, Brezesinski T, Pinna N, Boissiere C, Antonietti M, Sanchez C (2004) Highly crystalline cubic mesoporous TiO2 with 10-nm pore diameter made with a new block copolymer template. Chem Mater 16(15):2948–2952.  https://doi.org/10.1021/cm0495966 CrossRefGoogle Scholar
  5. 5.
    Liu B, Louis M, Jin L, Li GH, He J (2018) Co-template directed synthesis of gold nanoparticles in mesoporous titanium dioxide. Chem Eur J 24(38):9651–9657.  https://doi.org/10.1002/chem.201801223 CrossRefGoogle Scholar
  6. 6.
    Cao SB, Zhao YB, Qu T, Wang PP, Guan S, Xu YW, Rao F, Li YY, Chen AH, Iyoda T (2016) Ordered mesoporous crystalline titania with high thermal stability from comb-like liquid crystal block copolymers. RSC Adv 6(61):55834–55841.  https://doi.org/10.1039/c6ra10352a CrossRefGoogle Scholar
  7. 7.
    Nakata K, Fujishima A (2012) TiO2 photocatalysis: design and applications. J Photochem Photobiol C Photochem Rev 13(3):169–189.  https://doi.org/10.1016/j.jphotochemrev.2012.06.001 CrossRefGoogle Scholar
  8. 8.
    Verbruggen SW (2015) TiO2 photocatalysis for the degradation of pollutants in gas phase: from morphological design to plasmonic enhancement. J Photochem Photobiol C Photochem Rev 24:64–82.  https://doi.org/10.1016/j.jphotochemrev.2015.07.001 CrossRefGoogle Scholar
  9. 9.
    Bach U, Lupo D, Comte P, Moser JE, Weissortel F, Salbeck J, Spreitzer H, Gratzel M (1998) Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature 395(6702):583–585.  https://doi.org/10.1038/26936 CrossRefGoogle Scholar
  10. 10.
    Hagfeldt A, Boschloo G, Sun LC, Kloo L, Pettersson H (2010) Dye-sensitized solar cells. Chem Rev 110(11):6595–6663.  https://doi.org/10.1021/cr900356p CrossRefGoogle Scholar
  11. 11.
    Yi CY, Li X, Luo JS, Zakeeruddin SM, Gratzel M (2016) Perovskite photovoltaics with outstanding performance produced by chemical conversion of bilayer mesostructured lead halide/TiO2 films. Adv Mater 28(15):2964–2970.  https://doi.org/10.1002/adma.201506049 CrossRefGoogle Scholar
  12. 12.
    Stefano RM, Thomas W (2013) Titania supported hydrodesulphurisation catalysts. Patent no EP2606972A1Google Scholar
  13. 13.
    Zhang Y, Yang QG, Yang XY, Deng YH (2018) One-step synthesis of in situ N-doped ordered mesoporous titania for enhanced gas sensing performance. Microporous Mesoporous Mater 270:75–81.  https://doi.org/10.1016/j.micromeso.2018.04.008 CrossRefGoogle Scholar
  14. 14.
    Fischer MG, Hua X, Wilts BD, Gunkel I, Bennett TM, Steiner U (2017) Mesoporous titania microspheres with highly tunable pores as an anode material for lithium ion batteries. ACS Appl Mater Interfaces 9(27):22388–22397.  https://doi.org/10.1021/acsami.7b03155 CrossRefGoogle Scholar
  15. 15.
    Li W, Wang F, Liu YP, Wang JX, Yang JP, Zhang LJ, Elzatahry AA, Al-Dahyan D, Xia YY, Zhao DY (2015) General strategy to synthesize uniform mesoporous TiO2/graphene/mesoporous TiO2 sandwich-like nanosheets for highly reversible lithium storage. Nano Lett 15(3):2186–2193.  https://doi.org/10.1021/acs.nanolett.5b00291 CrossRefGoogle Scholar
  16. 16.
    Taffa DH, Kathiresan M, Walder L, Seelandt B, Wark M (2010) Pore size and surface charge control in mesoporous TiO2 using post-grafted SAMs. Phys Chem Chem Phys 12(7):1473–1482.  https://doi.org/10.1039/b921743f CrossRefGoogle Scholar
  17. 17.
    Fuertes MC, Marchena M, Marchi MC, Wolosiuk A, Soler-Illia G (2009) Controlled deposition of silver nanoparticles in mesoporous single- or multilayer thin films: from tuned pore fitting to selective spatial location of nanometric objects. Small 5(2):272–280.  https://doi.org/10.1002/smll.200800894 CrossRefGoogle Scholar
  18. 18.
    Soler-Illia G, Azzaroni O (2011) Multifunctional hybrids by combining ordered mesoporous materials and macromolecular building blocks. Chem Soc Rev 40(2):1107–1150.  https://doi.org/10.1039/c0cs00208a CrossRefGoogle Scholar
  19. 19.
    Fattakhova-Rohlfing D, Zaleska A, Bein T (2014) Three-dimensional titanium dioxide nanomaterials. Chem Rev 114(19):9487–9558.  https://doi.org/10.1021/cr500201c CrossRefGoogle Scholar
  20. 20.
    Loreto S, Vanrompay H, Mertens M, Bals S, Meynen V (2018) The influence of acids on tuning the pore size of mesoporous TiO2 templated by non-ionic block copolymers. Eur J Inorg Chem 1:62–65.  https://doi.org/10.1002/ejic.201701266 CrossRefGoogle Scholar
  21. 21.
    Meynen V, Cool P, Vansant EF (2009) Verified syntheses of mesoporous materials. Microporous Mesoporous Mater 125(3):170–223.  https://doi.org/10.1016/j.micromeso.2009.03.046 CrossRefGoogle Scholar
  22. 22.
    Meire M, Verbruggen SW, Lenaerts S, Lommens P, Van Der Voort P, Van Driessche I (2016) Microwave-assisted synthesis of mesoporous titania with increased crystallinity, specific surface area, and photocatalytic activity. J Mater Sci 51(21):9822–9829.  https://doi.org/10.1007/s10853-016-0215-y CrossRefGoogle Scholar
  23. 23.
    Lokupitiya HN, Jones A, Reid B, Guldin S, Stefik M (2016) Ordered mesoporous to macroporous oxides with tunable isomorphic architectures: solution criteria for persistent micelle templates. Chem Mater 28(6):1653–1667.  https://doi.org/10.1021/acs.chemmater.5b04407 CrossRefGoogle Scholar
  24. 24.
    Stefik M, Song J, Sai H, Guldin S, Boldrighini P, Orilall MC, Steiner U, Gruner SM, Wiesner U (2015) Ordered mesoporous titania from highly amphiphilic block copolymers: tuned solution conditions enable highly ordered morphologies and ultra-large mesopores. J Mater Chem A 3(21):11478–11492.  https://doi.org/10.1039/c5ta02483h CrossRefGoogle Scholar
  25. 25.
    Song L, Korstgens V, Magerl D, Su B, Froschl T, Husing N, Bernstorff S, Muller-Buschbaum P (2017) Low-temperature fabrication of mesoporous titania thin films. MRS Adv 2(43):2315–2325.  https://doi.org/10.1557/adv.2017.406 CrossRefGoogle Scholar
  26. 26.
    Wei J, Li YH, Wang MH, Yue Q, Sun ZK, Wang C, Zhao YJ, Deng YH, Zhao DY (2013) A systematic investigation of the formation of ordered mesoporous silicas using poly(ethylene oxide)-b-poly(methyl methacrylate) as the template. J Mater Chem A 1(31):8819–8827.  https://doi.org/10.1039/c3ta11469d CrossRefGoogle Scholar
  27. 27.
    Nakatani H, Hamachi R, Fukui K, Motokucho S (2018) Synthesis and activity characteristics of visible light responsive polymer photocatalyst system with a styrene block copolymer containing TiO2 gel. J Colloid Interface Sci 532:210–217.  https://doi.org/10.1016/j.jcis.2018.07.119 CrossRefGoogle Scholar
  28. 28.
    Xiao Y, You SS, Yao Y, Zheng T, Lin C, Roth SV, Muller-Buschbaum P, Steffen W, Sun LD, Yan CH, Gutmann JS, Yin MZ, Fu J, Cheng YJ (2013) Generalized synthesis of mesoporous rare earth oxide thin films through amphiphilic ionic block copolymer templating. Eur J Inorg Chem 8:1251–1257.  https://doi.org/10.1002/ejic.201201524 CrossRefGoogle Scholar
  29. 29.
    Zhang Q, Lin JP, Wang LQ, Xu ZW (2017) Theoretical modeling and simulations of self-assembly of copolymers in solution. Prog Polym Sci 75:1–30.  https://doi.org/10.1016/j.progpolymsci.2017.04.003 CrossRefGoogle Scholar
  30. 30.
    Lynd NA, Meuler AJ, Hillmyer MA (2008) Polydispersity and block copolymer self-assembly. Prog Polym Sci 33(9):875–893.  https://doi.org/10.1016/j.progpolymsci.2008.07.003 CrossRefGoogle Scholar
  31. 31.
    Thomas A, Schlaad H, Smarsly B, Antonietti M (2003) Replication of lyotropic block copolymer mesophases into porous silica by nanocasting: learning about finer details of polymer self-assembly. Langmuir 19(10):4455–4459.  https://doi.org/10.1021/la0340807 CrossRefGoogle Scholar
  32. 32.
    Baskaran D, Muller AHE (2007) Anionic vinyl polymerization—50 years after Michael Szwarc. Prog Polym Sci 32(2):173–219.  https://doi.org/10.1016/j.progpolymsci.2007.01.003 CrossRefGoogle Scholar
  33. 33.
    Feng HB, Lu XY, Wang WY, Kang NG, Mays JW (2017) Block copolymers: synthesis, self-assembly, and applications. Polymers 9(10):31.  https://doi.org/10.3390/polym9100494 CrossRefGoogle Scholar
  34. 34.
    Sarkar A, Evans L, Stefik M (2018) Expanded kinetic control for persistent micelle templates with solvent selection. Langmuir 34(20):5738–5749.  https://doi.org/10.1021/acs.langmuir.8b00417 CrossRefGoogle Scholar
  35. 35.
    Moad G, Rizzardo E, Thang SH (2009) Living radical polymerization by the RAFT process—a second update. Aust J Chem 62(11):1402–1472.  https://doi.org/10.1071/ch09311 CrossRefGoogle Scholar
  36. 36.
    Chiefari J, Chong YK, Ercole F, Krstina J, Jeffery J, Le TPT, Mayadunne RTA, Meijs GF, Moad CL, Moad G, Rizzardo E, Thang SH (1998) Living free-radical polymerization by reversible addition-fragmentation chain transfer: the RAFT process. Macromolecules 31(16):5559–5562.  https://doi.org/10.1021/ma9804951 CrossRefGoogle Scholar
  37. 37.
    Keddie DJ (2014) A guide to the synthesis of block copolymers using reversible-addition fragmentation chain transfer (RAFT) polymerization. Chem Soc Rev 43(2):496–505.  https://doi.org/10.1039/c3cs60290g CrossRefGoogle Scholar
  38. 38.
    Destarac M (2018) Industrial development of reversible-deactivation radical polymerization: is the induction period over? Polym Chem 9(40):4947–4967.  https://doi.org/10.1039/C8PY00970H CrossRefGoogle Scholar
  39. 39.
    Minehara H, Pitet LM, Kim S, Zha RH, Meijer EW, Hawker CJ (2016) Branched block copolymers for tuning of morphology and feature size in thin film nanolithography. Macromolecules 49(6):2318–2326.  https://doi.org/10.1021/acs.macromol.5b02649 CrossRefGoogle Scholar
  40. 40.
    Sarkar A, Stefik M (2017) How to make persistent micelle templates in 24 h and know it using X-ray scattering. J Mater Chem A 5(23):11840–11853.  https://doi.org/10.1039/c7ta01034f CrossRefGoogle Scholar
  41. 41.
    Bianchi A, Mauri M, Bonetti S, Koynov K, Kappl M, Lieberwirth I, Butt HJ, Simonutti R (2014) Hierarchical self-assembly of PDMA-b-PS chains into granular nanoparticles: genesis and fate. Macromol Rapid Commun 35(23):1994–1999.  https://doi.org/10.1002/marc.201400414 CrossRefGoogle Scholar
  42. 42.
    Stefik M, Sai H, Sauer K, Gruner SM, DiSalvo FJ, Wiesner U (2009) Three-component porous–carbon–titania nanocomposites through self-assembly of ABCBA block terpolymers with titania sols. Macromolecules 42(17):6682–6687.  https://doi.org/10.1021/ma900685e CrossRefGoogle Scholar
  43. 43.
    Helms BA, Williams TE, Buonsanti R, Milliron DJ (2015) Colloidal nanocrystal frameworks. Adv Mater 27(38):5820–5829.  https://doi.org/10.1002/adma.201500127 CrossRefGoogle Scholar
  44. 44.
    Zhang JY, Deng YH, Gu D, Wang ST, She L, Che RC, Wang ZS, Tu B, Xie SH, Zhao DY (2011) Ligand-assisted assembly approach to synthesize large-pore ordered mesoporous titania with thermally stable and crystalline framework. Adv Energy Mater 1(2):241–248.  https://doi.org/10.1002/aenm.201000004 CrossRefGoogle Scholar
  45. 45.
    Ferguson CJ, Hughes RJ, Nguyen D, Pham BTT, Gilbert RG, Serelis AK, Such CH, Hawkett BS (2005) Ab initio emulsion polymerization by RAFT-controlled self-assembly. Macromolecules 38(6):2191–2204.  https://doi.org/10.1021/ma048787r CrossRefGoogle Scholar
  46. 46.
    Asapu R, Claes N, Bals S, Denys S, Detavernier C, Lenaerts S, Verbruggen SW (2017) Silver-polymer core–shell nanoparticles for ultrastable plasmon-enhanced photocatalysis. Appl Catal B Environ 200:31–38.  https://doi.org/10.1016/j.apcatb.2016.06.062 CrossRefGoogle Scholar
  47. 47.
    Deng SR, Verbruggen SW, He ZB, Cott DJ, Vereecken PM, Martens JA, Bals S, Lenaerts S, Detavernier C (2014) Atomic layer deposition-based synthesis of photoactive TiO2 nanoparticle chains by using carbon nanotubes as sacrificial templates. RSC Adv 4(23):11648–11653.  https://doi.org/10.1039/c3ra42928h CrossRefGoogle Scholar
  48. 48.
    Verbruggen SW, Deng S, Kurttepeli M, Cott DJ, Vereecken PM, Bals S, Martens JA, Detavernier C, Lenaerts S (2014) Photocatalytic acetaldehyde oxidation in air using spacious TiO2 films prepared by atomic layer deposition on supported carbonaceous sacrificial templates. Appl Catal B Environ 160:204–210.  https://doi.org/10.1016/j.apcatb.2014.05.029 CrossRefGoogle Scholar
  49. 49.
    Rijckaert H, Pollefeyt G, Sieger M, Hanisch J, Bennewitz J, De Keukeleere K, De Roo J, Huhne R, Backer M, Paturi P, Huhtinen H, Hemgesberg M, Van Driessche I (2017) Optimizing nanocomposites through nanocrystal surface chemistry: superconducting YBa2Cu3O7 thin films via low-fluorine metal organic deposition and preformed metal oxide nanocrystals. Chem Mater 29(14):6104–6113.  https://doi.org/10.1021/acs.chemmater.7b02116 CrossRefGoogle Scholar
  50. 50.
    Harrisson S (2018) The downside of dispersity: why the standard deviation is a better measure of dispersion in precision polymerization. Polym Chem 9(12):1366–1370.  https://doi.org/10.1039/C8PY00138C CrossRefGoogle Scholar
  51. 51.
    Balajka J, Hines MA, DeBenedetti WJI, Komora M, Pavelec J, Schmid M, Diebold U (2018) High-affinity adsorption leads to molecularly ordered interfaces on TiO2 in air and solution. Science 361(6404):786–789.  https://doi.org/10.1126/science.aat6752 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemistry, Sol–Gel Centre for Research on Inorganic Powders and Thin Films Synthesis (SCRiPTS), Faculty of SciencesGhent UniversityGhentBelgium
  2. 2.Polymer Chemistry Research group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of SciencesGhent UniversityGhentBelgium
  3. 3.Department of Bioscience EngineeringUniversity of AntwerpAntwerpBelgium

Personalised recommendations