Journal of Materials Science

, Volume 55, Issue 1, pp 203–217 | Cite as

Ab initio calculations of CaZrO3 (011) surfaces: systematic trends in polar (011) surface calculations of ABO3 perovskites

  • Roberts I. EglitisEmail author
  • J. Kleperis
  • J. Purans
  • A. I. Popov
  • Ran Jia
Computation & theory


By means of the CRYSTAL computer program package, first-principles calculations of polar ZrO-, Ca- and O-terminated CaZrO3 (011) surfaces were performed. Our calculation results for polar CaZrO3 (011) surfaces are compared with the previous ab initio calculation results for ABO3 perovskite (011) and (001) surfaces. From the results of our hybrid B3LYP calculations, all upper-layer atoms on the ZrO-, Ca- and O-terminated CaZrO3 (011) surfaces relax inwards. The only exception from this systematic trend is outward relaxation of the oxygen atom on the ZrO-terminated CaZrO3 (011) surface. Different ZrO, Ca and O terminations of the CaZrO3 (011) surface lead to a quite different surface energies of 3.46, 1.49, and 2.08 eV. Our calculations predict a considerable increase in the Zr–O chemical bond covalency near the CaZrO3 (011) surface, both in the directions perpendicular to the surface (0.240e) as well as in the plane (0.138e), as compared to the CaZrO3 (001) surface (0.102e) and to the bulk (0.086e). Such increase in the B–O chemical bond population from the bulk towards the (001) and especially (011) surfaces is a systematic trend in all our eight calculated ABO3 perovskites.



Financial support via Latvian-Ukrainian Joint Research Project No. LV-UA/2018/2 for A. I. Popov, Latvian Council of Science Project No. 2018/2-0083 “Theoretical prediction of hybrid nanostructured photocatalytic materials for efficient water splitting” for R. I. Eglitis and J. Kleperis as well as ERAF project No. for R. I. Eglitis and J. Purans is greatly acknowledged.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Noguera C (2000) Polar oxide surfaces. J Phys Condens Matter 12:R367–R410Google Scholar
  2. 2.
    Goniakowski J, Finocchi F, Noguera C (2008) Polarity of oxide surfaces and nanostructures. Rep Prog Phys 71:016501Google Scholar
  3. 3.
    Sanna S, Schmidt WG (2017) LiNbO3 surfaces from a microscopic perspective. J Phys Condens Matter 29:413001Google Scholar
  4. 4.
    Dawber M, Rabe KM, Scott JF (2005) Physics of thin-film ferroelectric oxides. Rev Mod Phys 77:1083–1130Google Scholar
  5. 5.
    Ribeiro RAP, Andrés J, Longo E, Lazaro SR (2018) Magnetism and multiferroic properties at MnTiO3 surfaces: a DFT study. Appl Surf Sci 452:463–472Google Scholar
  6. 6.
    Ribeiro RAP, Lazaro SR, Gatti C (2016) The role of exchange–correlation functional on the description of multiferroic properties using density functional theory: the ATiO3 (A = Mn, Fe, Ni) case study. RSC Adv 6:101216–101225Google Scholar
  7. 7.
    Liu ZQ, Liu JH, Biegalski MD, Hu JM, Shang L, Ji Y, Wang JM, Hsu SL, Wong AT, Cordill MJ, Gludovatz B, Marker C, Yan H, Feng ZX, You L, Lin MW, Ward TZ, Liu ZK, Jiang CB, Chen LQ, Ritchie RO, Christen HM, Ramesh R (2018) Electrically reversible cracks in an intermetallic film controlled by an electric field. Nat Commun 9:41Google Scholar
  8. 8.
    Cohen RE (1992) Origin of ferroelectricity in perovskite oxides. Nature 358:136–138Google Scholar
  9. 9.
    Eglitis RI, Vanderbilt D (2007) Ab initio calculations of BaTiO3 and PbTiO3 (001) and (011) surface structure. Phys Rev B 76:155439Google Scholar
  10. 10.
    Eglitis RI, Vanderbilt D (2008) First-principles calculations of atomic and electronic structure of SrTiO3 (001) and (011) surfaces. Phys Rev B 77:195408Google Scholar
  11. 11.
    Eglitis RI, Vanderbilt D (2008) Ab initio calculations of the atomic and electronic structure of CaTiO3 (001) and (011) surfaces. Phys Rev B 78:155420Google Scholar
  12. 12.
    Yukawa R, Ozawa K, Yamamoto S, Liu RY, Matsuda I (2015) Anisotropic effective mass approximation model to calculate multiple subband structures at wide-gap semiconductor surfaces: application to accumulation layers of SrTiO3 and ZnO. Surf Sci 641:224–230Google Scholar
  13. 13.
    Kronik L, Shapira Y (1999) Surface photovoltage phenomena: theory, experiment, and applications. Surf Sci Rep 37:1–206Google Scholar
  14. 14.
    Zhu Y, Salvador PA, Rohrer GS (2017) Controlling the termination and photochemical reactivity of the SrTiO3 (110) surface. Phys Chem Chem Phys 19:7910–7918Google Scholar
  15. 15.
    Janesko BG, Jones SI (2017) Quantifying the delocalization of surface and bulk F-centers. Surf Sci 659:9–15Google Scholar
  16. 16.
    Kotomin EA, Eglitis RI, Maier J, Heifets E (2001) Calculations of the atomic and electronic structure for SrTiO3 perovskite thin films. Thin Solid Films 400:76–80Google Scholar
  17. 17.
    Koirala P, Gulec A, Marks LD (2017) Surface heterogeneity in KTaO3 (001). Surf Sci 657:15–19Google Scholar
  18. 18.
    Piskunov S, Eglitis RI (2015) First principles hybrid DFT calculations of BaTiO3/SrTiO3 (001) interface. Solid State Ion 274:29–33Google Scholar
  19. 19.
    Carrasco J, Illas F, Lopez N, Kotomin EA, Zhukovskii YF, Evarestov RA, Mastrikov YA, Piskunov S, Maier J (2006) First-principles calculations of the atomic and electronic structure of F centers in the bulk and on the (001) surface of SrTiO3. Phys Rev B 73:064106Google Scholar
  20. 20.
    Li D, Zhao MH, Garra J, Kolpak AM, Rappe AM, Bonnell DA, Vohs JM (2008) Direct in situ determination of the polarization dependence of physisorption on ferroelectric surfaces. Nat Mater 7:473–477Google Scholar
  21. 21.
    Fong DD, Kolpak AM, Eastman JA, Streiffer SK, Fuoss PH, Stephenson GB, Thompson C, Kim DM, Choi KJ, Eom CB, Grinberg I, Rappe AM (2006) Stabilization of monodomain polarization in ultrathin PbTiO3 films. Phys Rev Lett 96:127601Google Scholar
  22. 22.
    Eglitis RI, Piskunov S, Zhukovskii YF (2016) Ab initio calculations of PbTiO3/SrTiO3 (001) heterostructures. Phys Status Solidi C 13:913–920Google Scholar
  23. 23.
    Kolpak AM, Li D, Shao R, Rappe AM, Bonnell DA (2008) Evolution of the structure and thermodynamic stability of the BaTiO3 (001) surface. Phys Rev Lett 101:036102Google Scholar
  24. 24.
    Piskunov S, Eglitis RI (2016) Comparative ab initio calculations of SrTiO3/BaTiO3 and SrZrO3/PbZrO3 (001) heterostructures. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 374:20–23Google Scholar
  25. 25.
    Gerhold S, Riva M, Yildiz B, Schmid M, Diebold U (2016) Adjusting island density and morphology of the SrTiO3 (110)-(4 × 1) surface: pulsed laser deposition combined with scanning tunnelling microscopy. Surf Sci 651:76–83Google Scholar
  26. 26.
    Jia W, Vikhnin VS, Liu H, Kapphan S, Eglitis R, Usvyat D (1999) Critical effects in optical response due to charge transfer vibronic excitons and their structure in perovskite like systems. J Lumin 83–84:109–113Google Scholar
  27. 27.
    Farlenkov AS, Ananyev MV, Eremin VA, Porotnikova NM, Kurumchin EK, Melekh BT (2016) Oxygen isotope exchange in doped calcium and barium zirconates. Solid State Ion 290:108–115Google Scholar
  28. 28.
    Scott JF (2000) Ferroelectric memories. Springer, BerlinGoogle Scholar
  29. 29.
    Lines ME, Glass AM (1977) Principles and applications of ferroelectrics and related materials. Clarendon, OxfordGoogle Scholar
  30. 30.
    Anan’ev MV, Bershitskaya NM, Plaksin SV, Kurumchin EK (2012) Phase equilibriums, oxygen exchange kinetics and diffusion in oxides CaZr1−xScxO3−x/2−δ. Russ J Electrochem 48:879–886Google Scholar
  31. 31.
    Antonova EP, Ananyev MV, Porotnikova NM, Kurumchin EK (2016) Oxygen isotope exchange and electrical conductivity of CaZr1−xScxO3−x/2. J Solid State Electrochem 20:1497–1500Google Scholar
  32. 32.
    Lyagaeva YG, Medvedev DA, Demin AK, Yaroslavtseva TV, Plaksin SV, Porotnikova NM (2014) Specific features of preparation of dense deramic based on barium zirconate. Semiconductors 48:1353–1358Google Scholar
  33. 33.
    Savchin VP, Popov AI, Aksimentyeva OI, Klym H, Horbenko YY, Serga V, Moskina A, Karbovnyk I (2016) Cathodoluminescence characterization of polystyrene-BaZrO3 hybrid composites. Low Temp Phys 42:760–763Google Scholar
  34. 34.
    Aksimentyeva OI, Savchyn VP, Dyakonov VP, Piechota S, Horbenko YY, Opainych IY, Demchenko PY, Popov A, Szymczak H (2014) Modification of polymer-magnetic nanoparticles by luminescent and conducting substances. Mol Cryst Liq Cryst 590:35–42Google Scholar
  35. 35.
    Ceder G (1998) Computational materials science—predicting properties from scratch. Science 280:1099–1100Google Scholar
  36. 36.
    Ceder G, Chiang YM, Sadoway DR, Aydinol MK, Jang YI, Huang B (1998) Identification of cathode materials for lithium batteries guided by first-principles calculations. Nature 392:694–696Google Scholar
  37. 37.
    Eglitis RI, Borstel G (2005) Towards a practical rechargeable 5 V Li ion battery. Phys Status Solidi A 202:R13–R15Google Scholar
  38. 38.
    Eglitis RI (2015) Theoretical prediction of the 5 V rechargeable Li ion battery using Li2CoMn3O8 as a cathode. Phys Scr 90:094012Google Scholar
  39. 39.
    Arrigoni M, Kotomin EA, Maier J (2017) First-principles study of perovskite ultrathin films: stability and confinement effects. Isr J Chem 57:509–521Google Scholar
  40. 40.
    Arrigoni M, Bjørnheim TS, Kotomin EA, Maier J (2016) First principles study of confinement effects for oxygen vacancies in BaZrO3 (001) ultra-thin films. Phys Chem Chem Phys 18:9902–9908Google Scholar
  41. 41.
    Iles N, Finocchi F, Khodja KD (2010) A systematic study of ideal and double layer reconstructions of ABO3 (001) surfaces (A = Sr, Ba; B = Ti, Zr). J Phys Condens Matter 22:305001Google Scholar
  42. 42.
    Aballe L, Matencio S, Foerster M, Barrena E, Sanchez F, Fontcuberta J, Ocal C (2015) Instability and surface potential modulation of self-patterned (001) SrTiO3 surfaces. Chem Mater 27:6198–6204Google Scholar
  43. 43.
    Goh ES, Ong LH, Yoon TL, Chew KH (2016) Structural relaxation of BaTiO3 slab with tetragonal (100) surface: ab-initio comparison of different thickness. Curr Appl Phys 16:1491–1497Google Scholar
  44. 44.
    Eglitis RI (2015) Ab initio hybrid DFT calculations of BaTiO3, PbTiO3, SrZrO3 and PbZrO3 (111) surfaces. Appl Surf Sci 358:556–562Google Scholar
  45. 45.
    Zhuang HL, Ganesh P, Cooper VR, Xu H, Kent PRC (2014) Understanding the interactions between oxygen vacancies at SrTiO3 (001) surfaces. Phys Rev B 90:064106Google Scholar
  46. 46.
    Borstel G, Eglitis RI, Kotomin EA, Heifets E (2003) Modelling of defects and surfaces in perovskite ferroelectrics. Phys Status Solidi B 236:253–264Google Scholar
  47. 47.
    Lee YL, Morgan D (2015) Ab initio defect energetics of perovskite (001) surfaces for solid oxide fuel cells. A comparative study of LaMnO3 versus SrTiO3 and LaAlO3. Phys Rev B 91:195430Google Scholar
  48. 48.
    Luo B, Wang X, Tian E, Li G, Li L (2015) Structural and electronic properties of cubic KNbO3 (001) surfaces: a first-principles study. Appl Surf Sci 351:558–564Google Scholar
  49. 49.
    Eglitis RI (2013) Ab initio calculations of the atomic and electronic structure of BaZrO3 (111) surfaces. Solid State Ion 230:43–47Google Scholar
  50. 50.
    Brik MG, Ma CG, Krasnenko V (2013) First-principles calculations of the structural and electronic properties of the cubic CaZrO3 (001) surfaces. Surf Sci 608:146–153Google Scholar
  51. 51.
    Pilania G, Ramprasad R (2010) Adsorption of atomic oxygen on cubic PbTiO3 and LaMnO3 (001) surfaces: a density functional theory study. Surf Sci 604:1889–1893Google Scholar
  52. 52.
    Cord B, Courths R (1985) Electronic study of SrTiO3 (001) surfaces by photoemission. Surf Sci 162:34–38Google Scholar
  53. 53.
    Dejneka A, Tyunina M, Narkilahti J, Levoska J, Chvostova D, Jastribik L, Trepakov VA (2010) Tensile strain induced changes in the optical spectra of SrTiO3 epitaxial thin films. Phys Solid State 52:2082–2089Google Scholar
  54. 54.
    Erdman N, Poeppelmeier KR, Asta M, Warschkow O, Ellis DE, Marks LD (2002) The structure and chemistry of the TiO2 rich surface of SrTiO3 (001). Nature 419:55–58Google Scholar
  55. 55.
    Eglitis RI, Popov AI (2018) Systematic trends in (001) surface ab initio calculations of ABO3 perovskites. J Saudi Chem Soc 22:459–468Google Scholar
  56. 56.
    Eglitis RI (2014) Ab initio calculations of SrTiO3, BaTiO3, PbTiO3, CaTiO3, SrZrO3, PbZrO3 and BaZrO3 (001), (011) and (111) surfaces as well as F centers, polarons, KTN solid solutions and Nb impurities therein. Int J Mod Phys 28:1430009Google Scholar
  57. 57.
    Zhang JM, Cui J, Xu KW, Ji V, Man ZY (2007) Ab initio modelling of CaTiO3 (110) polar surfaces. Phys Rev B 76:115426Google Scholar
  58. 58.
    Heifets E, Kotomin EA, Maier J (2000) Semiempirical simulations of surface relaxation for perovskite titanates. Surf Sci 462:19–35Google Scholar
  59. 59.
    Bottin F, Finocchi F, Noguera C (2003) Stability and electronic structure of the (1 × 1) SrTiO3 (110) polar surfaces by first-principles calculations. Phys Rev B 68:035418Google Scholar
  60. 60.
    Heifets E, Goddard WA, Kotomin EA, Eglitis RI, Borstel G (2004) Ab initio calculations of the SrTiO3 (110) polar surface. Phys Rev B 69:035408Google Scholar
  61. 61.
    Enterkin JA, Subramanian AK, Russell BC, Castell MR, Poeppelmeier KR, Marks LD (2010) A homologous series of structures on the surface of SrTiO3 (110). Nat Mater 9:245–248Google Scholar
  62. 62.
    Zhang GX, Xie Y, Yu HT, Fu HG (2009) First-principles calculations of the stability and electronic properties of the PbTiO3 (110) polar surface. J Comput Chem 30:1785–1798Google Scholar
  63. 63.
    Zhang JM, Pang Q, Xu KW, Ji V (2009) First-principles study of the (110) polar surface of cubic PbTiO3. Comput Mater Sci 44:1360–1365Google Scholar
  64. 64.
    Xie Y, Yu HT, Zhang GH, Fu HG, Sun JZ (2007) First-principles investigation of stability and structural properties of the BaTiO3 (110) polar surface. J Phys Chem C 111:6343–6349Google Scholar
  65. 65.
    Wang J, Tang G, Wu XS (2012) Thermodynamic stability of BaTiO3 (110) surfaces. Phys Status Solidi B 249:796–800Google Scholar
  66. 66.
    Eglitis RI, Rohlfing M (2010) First-principles calculations of the atomic and electronic structure of SrZrO3 and PbZrO3 (001) and (011) surfaces. J Phys Condens Matter 22:415901Google Scholar
  67. 67.
    Chen H, Xie Y, Zhang GH, Yu HT (2014) A first-principles investigation of the stability and electronic properties of SrZrO3 (110) (1 × 1) polar terminations. J Phys Condens Matter 26:395002Google Scholar
  68. 68.
    Eglitis RI (2007) First principles calculations of BaZrO3 (001) and (011) surfaces. J Phys Condens Matter 19:356004Google Scholar
  69. 69.
    Heifets E, Ho J, Merinov B (2007) Density functional simulation of the BaZrO3 (011) surface structure. Phys Rev B 75:155431Google Scholar
  70. 70.
    Crosby LA, Kennedy RM, Chen BR, Wen JG, Poeppelmeier KR, Bedzyk JM, Marks LD (2016) Complex surface structure of (110) terminated strontium titanate nanododecahedra. Nanoscale 8:16606–16611Google Scholar
  71. 71.
    Lee C, Yang W, Parr RG (1988) Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789Google Scholar
  72. 72.
    Saunders VR, Dovesi R, Roetti C, Causa N, Harrison NM, Orlando R, Zicovich-Wilson CM (2014) CRYSTAL-2009 user manual. University of Torino, Torino, ItalyGoogle Scholar
  73. 73.
    Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652Google Scholar
  74. 74.
    Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188–5192Google Scholar
  75. 75.
    Eglitis RI (2015) Theoretical modelling of the energy surface (001) and topology of CaZrO3 perovskite. Ferroelectrics 483:75–85Google Scholar
  76. 76.
    Tasker PW (1979) The stability of ionic crystal surfaces. J Phys C 12:4977–4984Google Scholar
  77. 77.
    Pojani A, Finocchi F, Noguerra C (1999) Polarity of the SrTiO3 (111) and (110) surfaces. Surf Sci 442:179–198Google Scholar
  78. 78.
    Catlow CRA, Stoneham AM (1983) Ionicity in solids. J Phys C Solid State Phys 16:4321–4338Google Scholar
  79. 79.
    Bochicchio RC, Reale HF (1993) On the nature of crystalline bonding: extension of statistical population analysis to two- and three-dimensional crystalline systems. J Phys B At Mol Opt Phys 26:4871–4883Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Solid State PhysicsUniversity of LatviaRigaLatvia
  2. 2.Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical ChemistryJilin UniversityChangchunPeople’s Republic of China

Personalised recommendations