Advertisement

Growth and morphology control of CH3NH3PbBr3 crystals

  • 123 Accesses

Abstract

We present here an experimental study on the growth of CH3NH3PbBr3 crystals by conventional spin coating and simple drop casting methods. We observed directly that under the diffusion-limited regime, large-size cuboids and pyramid-like single crystals were obtained. Single-crystal X-ray diffraction revealed that these crystals were in the Pm-3m cubic crystalline structure phase, with a refined unit size of 5.93 Å. Polycrystals with fractal-like or snowflake-like morphologies were grown by spin coating method, on fluorine-doped tin oxide-coated glass substrates, that we referred to as the attachment kinetics-limited regime. Interestingly enough, with the same technique, cuboids CH3NH3PbBr3 single crystals were obtained on bare glass substrates. These single crystals and polycrystals exhibited a very strong photoluminescence effect. This study paves a way for controlled growth of CH3NH3PbBr3 crystals and their advanced optoelectronic applications.

This is a preview of subscription content, log in to check access.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

References

  1. 1

    Kojima A, Teshima K, Shirai Y, Miyasaka T (2009) Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc 131:6050–6051. https://doi.org/10.1021/ja809598r

  2. 2

    Sahli F, Werner J, Kamino BA et al (2018) Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency. Nat Mater 17:820–826. https://doi.org/10.1038/s41563-018-0115-4

  3. 3

    Chin XY, Cortecchia D, Yin J et al (2015) Lead iodide perovskite light-emitting field-effect transistor. Nat Commun 6:7383. https://doi.org/10.1038/ncomms8383

  4. 4

    Zhang Q, Ha ST, Liu X et al (2014) Room-temperature near-infrared high-Q perovskite whispering-gallery planar nanolasers. Nano Lett 14:5995–6001. https://doi.org/10.1021/nl503057g

  5. 5

    Chen Q, De Marco N, Yang Y et al (2015) Under the spotlight: the organic–inorganic hybrid halide perovskite for optoelectronic applications. Nano Today 10:355–396. https://doi.org/10.1016/j.nantod.2015.04.009

  6. 6

    Chen Y, He M, Peng J et al (2016) Structure and growth control of organic–inorganic halide perovskites for optoelectronics: from polycrystalline films to single crystals. Adv Sci 3:1500392. https://doi.org/10.1002/advs.201500392

  7. 7

    Shi D, Adinolfi V, Comin R et al (2015) Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 347:519. https://doi.org/10.1126/science.aaa2725

  8. 8

    Saidaminov MI, Abdelhady AL, Murali B et al (2015) High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization. Nat Commun 6:7586. https://doi.org/10.1038/ncomms8586

  9. 9

    Nguyen MT, Vu TVP, Bui BT et al (2016) Optical and structural study of organometal halide materials for applications in perovskite-based solar cells. J Electron Mater 45:2322–2327. https://doi.org/10.1007/s11664-015-4273-8

  10. 10

    Li X, Bi D, Yi C et al (2016) A vacuum flash-assisted solution process for high-efficiency large-area perovskite solar cells. Science 353:58–62. https://doi.org/10.1126/science.aaf8060

  11. 11

    Ji H, Shi Z, Sun X et al (2017) Vapor-assisted solution approach for high-quality perovskite CH3NH3PbBr3 thin films for high-performance green light-emitting diode applications. ACS Appl Mater Interfaces 9:42893–42904. https://doi.org/10.1021/acsami.7b13260

  12. 12

    Liu M, Johnston MB, Snaith HJ (2013) Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501:395–398. https://doi.org/10.1038/nature12509

  13. 13

    Deng K, Li L (2016) Advances in the application of atomic layer deposition for organometal halide perovskite solar cells. Adv Mater Interfaces 3:1600505. https://doi.org/10.1002/admi.201600505

  14. 14

    Liu Y, Ren X, Zhang J et al (2017) 120 mm single-crystalline perovskite and wafers: towards viable applications. Sci Chin Chem 60:1367–1376. https://doi.org/10.1007/s11426-017-9081-3

  15. 15

    Lee L, Baek J, Park KS et al (2017) Wafer-scale single-crystal perovskite patterned thin films based on geometrically-confined lateral crystal growth. Nat Commun 8:15882. https://doi.org/10.1038/ncomms15882

  16. 16

    Khoram P, Brittman S, Dzik WI et al (2016) Growth and characterization of PDMS-stamped halide perovskite single microcrystals. J Phys Chem C 120:6475–6481. https://doi.org/10.1021/acs.jpcc.6b02011

  17. 17

    Spina M, Bonvin E, Sienkiewicz A et al (2016) Controlled growth of CH3NH3PbI3 nanowires in arrays of open nanofluidic channels. Sci Rep 6:19834. https://doi.org/10.1038/srep19834

  18. 18

    Smith MD, Crace EJ, Jaffe A, Karunadasa HI (2018) The diversity of layered halide perovskites. Annu Rev Mater Res 48:111–136. https://doi.org/10.1146/annurev-matsci-070317-124406

  19. 19

    Stoumpos CC, Cao DH, Clark DJ et al (2016) Ruddlesden–Popper hybrid lead iodide perovskite 2D homologous semiconductors. Chem Mater 28:2852–2867. https://doi.org/10.1021/acs.chemmater.6b00847

  20. 20

    Yuan Z, Zhou C, Tian Y et al (2017) One-dimensional organic lead halide perovskites with efficient bluish white-light emission. Nat Commun 8:14051. https://doi.org/10.1038/ncomms14051

  21. 21

    Zhang Y, Saidaminov MI, Dursun I et al (2017) Zero-dimensional Cs4PbBr6 perovskite nanocrystals. J Phys Chem Lett 8:961–965. https://doi.org/10.1021/acs.jpclett.7b00105

  22. 22

    Ye T, Bruno A, Han G et al (2018) Efficient and ambient-air-stable solar cell with highly oriented 2D@3D perovskites. Adv Funct Mater 28:1801654. https://doi.org/10.1002/adfm.201801654

  23. 23

    Zhang Y, Liu Y, Li Y et al (2016) Perovskite CH3NH3Pb(BrxI1−x)3 single crystals with controlled composition for fine-tuned bandgap towards optimized optoelectronic applications. J Mater Chem C 4:9172–9178. https://doi.org/10.1039/C6TC03592B

  24. 24

    Noh JH, Im SH, Heo JH et al (2013) Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells. Nano Lett 13:1764–1769. https://doi.org/10.1021/nl400349b

  25. 25

    Harwell JR, Whitworth GL, Turnbull GA, Samuel IDW (2017) Green perovskite distributed feedback lasers. Sci Rep 7:11727. https://doi.org/10.1038/s41598-017-11569-3

  26. 26

    Su J, Sang L, Wang D et al (2016) Solution growth and morphology of CH3NH3PbBr3 single crystals in different solvents. Cryst Res Technol 51:650–655. https://doi.org/10.1002/crat.201600193

  27. 27

    Zhao P, Xu J, Dong X et al (2015) Large-size CH3NH3PbBr3 single crystal: growth and in situ characterization of the photophysics properties. J Phys Chem Lett 6:2622–2628. https://doi.org/10.1021/acs.jpclett.5b01017

  28. 28

    Zhang Y, Huang F, Mi Q (2016) Preferential facet growth of methylammonium lead halide single crystals promoted by halide coordination. Chem Lett 45:1030–1032. https://doi.org/10.1246/cl.160419

  29. 29

    Shi Z, Li Y, Zhang Y et al (2017) High-efficiency and air-stable perovskite quantum dots light-emitting diodes with an all-inorganic heterostructure. Nano Lett 17:313–321. https://doi.org/10.1021/acs.nanolett.6b04116

  30. 30

    Shi ZF, Sun XG, Wu D et al (2016) High-performance planar green light-emitting diodes based on a PEDOT:PSS/CH3NH3PbBr3/ZnO sandwich structure. Nanoscale 8:10035–10042. https://doi.org/10.1039/c6nr00818f

  31. 31

    Ye T, Wang X, Li X et al (2017) Ultra-high seebeck coefficient and low thermal conductivity of a centimeter-sized perovskite single crystal acquired by a modified fast growth method. J Mater Chem C 5:1255–1260. https://doi.org/10.1039/c6tc04594d

  32. 32

    Forró L, Náfrádi B, Pisoni R et al (2015) Tuning of the thermoelectric figure of merit of CH3NH3MI3 (M = Pb, Sn) photovoltaic perovskites. J Phys Chem C 119:11506–11510. https://doi.org/10.1021/acs.jpcc.5b03939

  33. 33

    Fu Y, Meng F, Rowley MB et al (2015) Solution growth of single crystal methylammonium lead halide perovskite nanostructures for optoelectronic and photovoltaic applications. J Am Chem Soc 137:5810–5818. https://doi.org/10.1021/jacs.5b02651

  34. 34

    Wang N, Cheng L, Si J et al (2016) Morphology control of perovskite light-emitting diodes by using amino acid self-assembled monolayers. Appl Phys Lett 108:141102. https://doi.org/10.1063/1.4945330

  35. 35

    Jao MH, Lu CF, Tai PY, Su WF (2017) Precise facet engineering of perovskite single crystals by ligand-mediated strategy. Cryst Growth Des 17:5945–5952. https://doi.org/10.1021/acs.cgd.7b01040

  36. 36

    Huang K, Yuan L, Feng S (2015) Crystal facet tailoring art in perovskite oxides. Inorg Chem Front 2:965–981. https://doi.org/10.1039/C5QI00168D

  37. 37

    Debroye E, Yuan H, Bladt E et al (2017) Facile morphology-controlled synthesis of organolead iodide perovskite nanocrystals using binary capping agents. Chem Nano Mat 3:223–227. https://doi.org/10.1002/cnma.201700006

  38. 38

    Zhang B, Guo F, Yang L et al (2017) Shape-Evolution control of hybrid perovskite CH3NH3PbI3 crystals via solvothermal synthesis. J Cryst Growth 459:167–172. https://doi.org/10.1016/j.jcrysgro.2016.12.014

  39. 39

    Guo F, Zhang B, Wang J et al (2017) Facile solvothermal method to synthesize hybrid perovskite CH3NH3PbX3 (X = I, Br, Cl) crystals. Opt Mater Express 7:4156. https://doi.org/10.1364/OME.7.004156

  40. 40

    McMeekin DP, Wang Z, Rehman W et al (2017) Crystallization kinetics and morphology control of formamidinium–cesium mixed-cation lead mixed-halide perovskite via tunability of the colloidal precursor solution. Adv Mater 29:1607039. https://doi.org/10.1002/adma.201607039

  41. 41

    Kavokin AV, Shelykh IA, Taylor T, Glazov MM (2012) Vertical cavity surface emitting terahertz laser. Phys Rev Lett 108:197401. https://doi.org/10.1103/PhysRevLett.108.197401

  42. 42

    Thuat NT, An MN, Luong TT et al (2018) Growth of single crystals of methylammonium lead mixedhalide perovskites. Commun Phys 28:237. https://doi.org/10.15625/0868-3166/28/3/12666

  43. 43

    Libbrecht KG (2005) The physics of snow crystals. Rep Prog Phys 68:855–895. https://doi.org/10.1088/0034-4885/68/4/R03

  44. 44

    Tilchin J, Dirin DN, Maikov GI et al (2016) Hydrogen-like Wannier–Mott excitons in single crystal of methylammonium lead bromide perovskite. ACS Nano 10:6363–6371. https://doi.org/10.1021/acsnano.6b02734

  45. 45

    Chen C, Lu W, Shi L et al (2017) Elucidating the phase transitions and temperature-dependent photoluminescence of MAPbBr3 single crystal. J Phys D Appl Phys 51:045105. https://doi.org/10.1088/1361-6463/aaa0ed

  46. 46

    Linnenbank H, Saliba M, Gui L et al (2018) Temperature dependent two-photon photoluminescence of CH3NH3PbBr3: structural phase and exciton to free carrier transition. Opt Mater Express 8:511. https://doi.org/10.1364/ome.8.000511

  47. 47

    Fang HH, Raissa R, Abdu-Aguye M et al (2015) Photophysics of organic–inorganic hybrid lead iodide perovskite single crystals. Adv Funct Mater 25:2378–2385. https://doi.org/10.1002/adfm.201404421

Download references

Author information

Correspondence to Thuat Nguyen-Tran.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 2 (AVI 3489 kb)

Supplementary material 3 (AVI 4587 kb)

Supplementary material 1 (DOCX 8426 kb)

Supplementary material 2 (AVI 3489 kb)

Supplementary material 3 (AVI 4587 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nguyen-Tran, T., Truong, T.T., Nguyen, T.M. et al. Growth and morphology control of CH3NH3PbBr3 crystals. J Mater Sci 54, 14797–14808 (2019). https://doi.org/10.1007/s10853-019-03943-5

Download citation