Advertisement

Journal of Materials Science

, Volume 55, Issue 1, pp 347–357 | Cite as

On the binary Sb–Sn system: ab initio calculation and thermodynamic remodeling

  • Wojciech GierlotkaEmail author
Metals & corrosion
  • 44 Downloads

Abstract

The thermodynamic descriptions of phase diagrams play an important role in modern materials engineering, especially as a part of materials genome used for development of new alloys. Therefore, it is crucial to have a thermodynamic database that is in agreement with recent experimental findings. The binary Sb–Sn system is an important part of step soldering and a promising Li-ion battery electrode; therefore, a knowledge of its phase equilibria is essential for modern engineering. The newest experimental results enhanced the knowledge about phase equilibria and crystal structures in this system, and hence it is possible to propose a new, more accurate thermodynamic model of this important binary system. In this work, the CALPHAD method was used for determination of Gibbs energies of all phases; moreover, the new knowledge about a crystal structure of intermetallic compound Sb3Sn4 enabled the application of the first-principles calculations, which made CALPHAD description more precise. The proposed thermodynamic description shows a good agreement with available experimental data and can be used for future development of higher-ordered alloys.

Notes

Acknowledgements

The work was supported by Taiwan Ministry of Science and Technology under Grant 107-2221-E-259-011.

Compliance with ethical standards

Conflict of interest

The author declares that he has no conflict of interest.

References

  1. 1.
    Ohnuma I, Liu XJ, Ohtani H, Ishida K (1999) Thermodynamioc database for micro-soldering alloys. J Electron Mater 28:1164–1171CrossRefGoogle Scholar
  2. 2.
    Jang JW, Kim PG, Tu KM, Lee M (1999) High-temperature lead-free SnSb solders: wetting reactions on Cu foils and phased-in Cu–Cr thin films. J Mater Res 14:3895–3900CrossRefGoogle Scholar
  3. 3.
    Corbin SF (2005) High-temperature variable melting point Sn–Sb solder paste using transient liquid-phase powder processing. J Electron Mater 34:1016–1025CrossRefGoogle Scholar
  4. 4.
    Kamali AR, Fray DJ (2011) Tin-based materials as advanced anode materials for lithium ion batteries: a review. Rev Adv Mater Sci 27:14–24Google Scholar
  5. 5.
    Olson GB (2000) Materials by design. Science 288:995–1001CrossRefGoogle Scholar
  6. 6.
    Schmetterer C, Polt J, Flandorfer H (2017) The phase equilibria in the Sb–Sn system—part I: literature review. J Alloys Compd 728:497–505CrossRefGoogle Scholar
  7. 7.
    Reinders W (1900) Alloys of antimony and tin. Z Anorg Chem 25:113–125CrossRefGoogle Scholar
  8. 8.
    Gallagher FE (1906) The alloys of antimony and tin. J Phys Chem US 10:93–98CrossRefGoogle Scholar
  9. 9.
    Williams RS (1907) On the alloys of antimony with magnese, chromium, silicon and tin, of bismuth with chromium and silicon and of magnese with tin and lead. Z Anorg Chem 55:1–33CrossRefGoogle Scholar
  10. 10.
    Loebe R (1911) Uber die Konstitution der ternaren Lagierungen von Blei, Zinn und Antimon. Metallurgie 8:7–15CrossRefGoogle Scholar
  11. 11.
    Konstantinow N, Smirnow W (1912) Uber die Legierungen von Zinn und Antimon. In: Internationale Zeitschrift fur Metallographie, Berlin, pp 152–171Google Scholar
  12. 12.
    Stead JE, Spencer LJ (1919) On the Sb–Sn system. J Inst Met 22:127–130Google Scholar
  13. 13.
    Jones WM, Bowen EG (1930) The compound SnSb. Nature 126:846–847CrossRefGoogle Scholar
  14. 14.
    Bowen EG, Jones WM (1931) An X-rey investigation of the tin-antimony alloys. Philos Mag 106:441–462CrossRefGoogle Scholar
  15. 15.
    Broniewski W, Sliwowski L (1928) Antimony-tin alloys. Rev Met 25:312–321CrossRefGoogle Scholar
  16. 16.
    Iwase K, Aoki N, Osawa A (1931) DTA measurements in Sb–Sn alloys. Sci Rep Tohoku Imp Univ 20:353Google Scholar
  17. 17.
    Blondel R, Laffitte P (1935) Phase transformations in Sb–Sn alloys. Comptes Rendus 200:1472–1474Google Scholar
  18. 18.
    Hagg G, Hybinette AG (1935) X-ray studies on the system tin-antimony and tin-arsenic. Philos Mag 20:913–929CrossRefGoogle Scholar
  19. 19.
    Hansen M, Onderko K (1958) Constitution of binary alloys. McGraw-Hill, New YorkCrossRefGoogle Scholar
  20. 20.
    Eyro BL (1960) The solid solubility of antimony in tin. J Inst Met 88:223–224Google Scholar
  21. 21.
    Allen WP, Perepezko JH (1990) Constitution of the tin-antimony system. Scr Metall Mater 24:2215–2220CrossRefGoogle Scholar
  22. 22.
    Predel B, Schwermann W (1971) Constitution and thermodynamics of antimony-tin system. J Inst Met 99:169–172Google Scholar
  23. 23.
    Okamoto H, Subramanian PR, Massalski TB (1990) Binary alloy phase diagrams. ASM International, Materials ParkGoogle Scholar
  24. 24.
    Vassilev V, Lelaurain M, Hertz J (1997) A new proposal for the binary (Sn, Sb) phase diagram and its thermodynamic properties based on a new emf study. J Alloys Compd 247:223–233CrossRefGoogle Scholar
  25. 25.
    Ohtani H, Okuda K, Ishida K (1995) Thermodynamic study of phase equilibria in the Pb–Sn–Sb system. J Phase Equilb 16:416–429CrossRefGoogle Scholar
  26. 26.
    Hao IS, Kang T, Park PC (1977) On the Sb–Sn system: electrochemical measurement of thermodynamic properties in liquid phase. Korean Metall Trans 15:361–365Google Scholar
  27. 27.
    Chen SW, Chen CC, Gierlotka W, Zi AR, Chen PY, Wu HJ (2008) Phase equilibria of the Sn–Sb system. J Electron Mater 37:992–1002CrossRefGoogle Scholar
  28. 28.
    Schmetterer C, Polt J, Flandorfer H (2018) The phase equilibria in the Sb–Sn system—part II: experimental results. J Alloys Compd 743:523–536CrossRefGoogle Scholar
  29. 29.
    Kawakami M (1930) A further investigation of the heat of mixture in molten metals. Sci Rep Res Inst Tohoku Univ 19:521–549Google Scholar
  30. 30.
    Kleppa OJ (1956) A calorimetric investigation of some binary and ternary liquid alloys rich in tin. J Phys Chem 60:842–846CrossRefGoogle Scholar
  31. 31.
    Witting FE, Gehring E (1971) Die Mischungswarmen des Antimonos mit B-Metallen. Ber Bunsenges Phys Chem 71:372–376Google Scholar
  32. 32.
    Sommer F, Lück R, Rupf-Bolz N, Predel B (1983) Chemical short-range order in liquid Sb–Sn alloys proved with the aid of the dependence of the mixing enthalpies o temperature. Mater Res Bull 18:621–629CrossRefGoogle Scholar
  33. 33.
    Azzoui M, Notin M, Hertz J (1993) Ternary experimental excess functions by means of high-order polynomials. Enthalpy of mixing of liquid Pb–Sn–Sb alloys. Z Metallkd 84:545–551Google Scholar
  34. 34.
    Frantic RO, McDonalds HJ (1946) A thermodynamic study of the tin-antymony system. Trans Electrochem Soc 88:243–251CrossRefGoogle Scholar
  35. 35.
    Yanko JA, Drake AE, Hovorka F (1946) Thermodynamioc studies of dilute solutions in molten binary alloys. Trans Electrochem Soc 89:357–372CrossRefGoogle Scholar
  36. 36.
    Vassiliev V, Feutelais Y, Sghaier M, Legendre B (2001) Thermodynamic investigation in In-Sb, Sb–Sn and In-Sb–Sn liquid systems. J Alloys Compd 314:198–205CrossRefGoogle Scholar
  37. 37.
    Itoh K, Koiko K, Narita Y (1980) Activity measurement of Pb–Sn and Sn–Sb based molten alloys. Nippon Kogo Kaishi 96:97–101Google Scholar
  38. 38.
    Jendrzejczyk-Handzlik D, Fitzner K (2015) Thermodynamic properties of liquid (antimony + tin) and (gold + antimony + tin) alloys determined from e.mn.f. measurement. J Chem Thermodyn 85:86–93CrossRefGoogle Scholar
  39. 39.
    Jonsson B, Agren J (1986) Thermodynamic assessment of Sb–Sn system. Mater Sci Technol 2:913–916CrossRefGoogle Scholar
  40. 40.
    Oh CS, Shim JH, Lee B-J, Lee DN (1996) A thermodynamic study on the Ag-Sb–Sn system. J Alloys Compd 238:155–166CrossRefGoogle Scholar
  41. 41.
    Lysenko VA (2019) Thermodynamic reassessment of the Sb–Sn and In–Sb–Sn system. J Alloys Compd 776:850–856CrossRefGoogle Scholar
  42. 42.
    Okamoto H (1998) Sb–Sn (antimony-tin). J Phase Equilib 19:292CrossRefGoogle Scholar
  43. 43.
    Scientific Group Thermodata Europe (2015) Unary Database v. 5.0, FranceGoogle Scholar
  44. 44.
    Kaptay G (2017) The exponential excess Gibbs energy model revisited. Calphad 56:169–184CrossRefGoogle Scholar
  45. 45.
    Momma K, Izumi F (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric, and morphology data. J Appl Crystallogr 44:1272–1276CrossRefGoogle Scholar
  46. 46.
    Bjorkman T (2011) CIF2Cell: generating geometries for electronic structure programs. Comput Phys Commun 182:1183–1186CrossRefGoogle Scholar
  47. 47.
  48. 48.
    Okamoto H (2012) Sb–Sn (antimony-tin). J Phase Equilib Differ 34:347CrossRefGoogle Scholar
  49. 49.
    Schmid-Fetzer R, Andersson D, Chevalier PY, Eleno L, Fabrichnaya O, Kattner UR, Sundman B, Wang C, Watson A, Zabdyr L, Zinkevich M (2007) Assessment techniques, database design and software facilities for thermodynamics and diffusion. Calphad 31:38–52CrossRefGoogle Scholar
  50. 50.
    Schiferl D, Barrett CS (1969) The crystal structure of arsenic at 4.2, 78 and 299 K. J Appl Cryst 2:30–36CrossRefGoogle Scholar
  51. 51.
    Allison MC, Avdeev M, Schmid S, Liu S, Söhnel T, Ling CD (2016) Synthesis, structure and geometrically frustrated magnetism of the layered oxide-stannide compounds Fe(Fe3-xMnx)Si2Sn7O16. Dalton Trans 45:9689–9694CrossRefGoogle Scholar
  52. 52.
    Andersson JO, Helander T, Höglund L, Shi PF, Sundman B (2002) Thermo-Calc and DICTRA, computational tools for materials science. Calphad 26:273–312CrossRefGoogle Scholar
  53. 53.
    Chen SL, Daniel S, Zhang F, Chang YA, Yan XY, Xie FY, Schmid-Fetzer R, Oates WA (2002) The PANDAT software package and its application. Calphad 26:175–188CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.National Dong Hwa UniversityHualienTaiwan, ROC

Personalised recommendations