Advertisement

Journal of Materials Science

, Volume 55, Issue 1, pp 125–139 | Cite as

Romanesco broccoli”-like palladium nano-fractals for superior methanol electro-oxidation

  • Narinder Singh
  • Amrit Pal Toor
  • Gaurav VermaEmail author
Chemical routes to materials
  • 137 Downloads

Abstract

Palladium nanoscale particles possessing distinct planes/facets for fuel cell applications are challenging to construct using simple methods. This work exhibits a facile-solution phase room-temperature synthesis of highly branched and exceptionally ordered 3D Pd nano-fractals (200–300 nm). Using high-resolution atomic imaging, we explain the mechanism of growth and proliferation of facets after twinning. Due to its unique and novel shape, there is an unprecedented 2.025 eV blue shift in d-region of XPS spectra of Pd nano-fractals indicating a phenomenal increase in surface electron density. This is highly favorable for utilizing this promising catalyst for enhanced surface activity. The Pd nano-fractal structures are tested as anodic material, and they show significantly enhanced electrocatalytic activity and superior long-term stability towards methanol oxidation reaction in alkaline media. Thus, low-index enclosed Pd nanostructures could be useful catalysis materials if uniquely shaped and morphologically controlled at nanoscales.

Notes

Acknowledgements

Narinder Singh acknowledges financial support toward his doctorate studies from TEQIP-II and Council of Scientific & Industrial Research (Budget head P-81-101) in the form of senior research fellowship. The authors acknowledge the contribution of SAP (UGC, New Delhi), PURSE (DST, New Delhi), TEQIP-II and TEQIP-III grants to carry out the experimentation at the Institute. The authors thank SAIF/RSIC, Panjab University and Advanced Imaging Centre & Advanced Centre for Materials Science, IIT Kanpur for providing us with instrumentation facilities. The authors also extend their thanks to Dr. Manoj Kumar Nayak, Dr. Pooja Sharma, Dr. S. K. Arora and Mr. Rahul, and CSIO-CSIR for providing cyclic voltammetry facility. The authors express their sincere gratitude to Aman Gupta of M/s Sukhvir Studio, Panjab University Chandigarh for helping in pseudocolouring and Anjali Joshi for contrast resolution imaging.

Compliance with ethical standards

Conflict of interest

The authors declare there are no conflicts to declare.

Supplementary material

10853_2019_3925_MOESM1_ESM.avi (33.8 mb)
Supplementary material 1 (AVI 34563 kb)
10853_2019_3925_MOESM2_ESM.avi (30 mb)
Supplementary material 2 (AVI 30723 kb)
10853_2019_3925_MOESM3_ESM.avi (17.3 mb)
Supplementary material 3 (AVI 17667 kb)
10853_2019_3925_MOESM4_ESM.avi (48 mb)
Supplementary material 4 (AVI 49156 kb)
10853_2019_3925_MOESM5_ESM.pdf (37.2 mb)
Supplementary material 5 (PDF 38072 kb)

References

  1. 1.
    Liu X, Xu G, Chen Y et al (2015) A strategy for fabricating porous PdNi@Pt core–shell nanostructures and their enhanced activity and durability for the methanol electrooxidation. Sci Rep 5:6–11.  https://doi.org/10.1038/srep07619 CrossRefGoogle Scholar
  2. 2.
    Ding LX, Wang AL, Ou YN et al (2013) Hierarchical Pd–Sn alloy nanosheet dendrites: an economical and highly active catalyst for ethanol electrooxidation. Sci Rep 3:1–7.  https://doi.org/10.1038/srep01181 CrossRefGoogle Scholar
  3. 3.
    Modibedi RM, Mehlo T, Ozoemena KI, Mathe MK (2015) Preparation, characterisation and application of Pd/C nanocatalyst in passive alkaline direct ethanol fuel cells (ADEFC). Int J Hydrog Energy 40:15605–15612.  https://doi.org/10.1016/j.ijhydene.2015.08.113 CrossRefGoogle Scholar
  4. 4.
    Guo X, Tan Y (2015) Synthesis of branched Pd nanocrystals with tunable structures, their growth mechanism, and enhanced electrocatalytic properties. Phys Chem Chem Phys 17:31956–31965.  https://doi.org/10.1039/c5cp05531h CrossRefGoogle Scholar
  5. 5.
    Ye SJ, Kim DY, Kang SW et al (2014) Synthesis of chestnut-bur-like palladium nanostructures and their enhanced electrocatalytic activities for ethanol oxidation. Nanoscale 6:4182–4187.  https://doi.org/10.1039/c3nr06410g CrossRefGoogle Scholar
  6. 6.
    Kannan P, Dolinska J, Maiyalagan T, Opallo M (2014) Facile and rapid synthesis of Pd nanodendrites for electrocatalysis and surface-enhanced Raman scattering applications. Nanoscale 6:11169–11176.  https://doi.org/10.1039/c4nr02896a CrossRefGoogle Scholar
  7. 7.
    O’Brien CP, Lee IC (2017) CO poisoning and CO hydrogenation on the surface of Pd hydrogen separation membranes. J Phys Chem C 121:16864–16871.  https://doi.org/10.1021/acs.jpcc.7b05046 CrossRefGoogle Scholar
  8. 8.
    Ortiz-Ortega E, Carrera-Cerritos R, Arjona N et al (2014) Pd nanostructures with high tolerance to CO poisoning in the formic acid electrooxidation reaction. Procedia Chem 12:9–18.  https://doi.org/10.1016/J.PROCHE.2014.12.035 CrossRefGoogle Scholar
  9. 9.
    Watt J, Young N, Haigh S et al (2009) Synthesis and structural characterization of branched palladium nanostructures. Adv Mater 21:2288–2293.  https://doi.org/10.1002/adma.200900272 CrossRefGoogle Scholar
  10. 10.
    Lim B, Xia Y (2011) Metal nanocrystals with highly branched morphologies. Angew Chemie Int Ed 50:76–85.  https://doi.org/10.1002/anie.201002024 CrossRefGoogle Scholar
  11. 11.
    Zhou R, Zhou W, Zhang H et al (2011) Facile template-free synthesis of pine needle-like Pd micro/nano-leaves and their associated electro-catalytic activities toward oxidation of formic acid. Nanoscale Res Lett 6:1–6.  https://doi.org/10.1186/1556-276X-6-381 CrossRefGoogle Scholar
  12. 12.
    Guo Y, Xu Y-T, Zhao B et al (2015) Urchin-like Pd@CuO–Pd yolk–shell nanostructures: synthesis, characterization and electrocatalysis. J Mater Chem A 3:13653–13661.  https://doi.org/10.1039/C5TA01891A CrossRefGoogle Scholar
  13. 13.
    Meng H, Wang C, Shen PK, Wu G (2011) Palladium thorn clusters as catalysts for electrooxidation of formic acid. Energy Environ Sci 4:1522–1526.  https://doi.org/10.1039/c0ee00702a CrossRefGoogle Scholar
  14. 14.
    Lim B, Jiang M, Tao J et al (2009) Shape-controlled synthesis of Pd nanocrystals in aqueous solutions. Adv Funct Mater 19:189–200.  https://doi.org/10.1002/adfm.200801439 CrossRefGoogle Scholar
  15. 15.
    Miller HA, Vizza F, Marelli M et al (2017) Highly active nanostructured palladium–ceria electrocatalysts for the hydrogen oxidation reaction in alkaline medium. Nano Energy 33:293–305CrossRefGoogle Scholar
  16. 16.
    Huang H, Ruditskiy A, Choi S et al (2017) One-pot synthesis of penta-twinned palladium nanowires and their enhanced electrocatalytic properties. ACS Appl Mater Interfaces 9(36):31203–31212.  https://doi.org/10.1021/acsami.7b12018 CrossRefGoogle Scholar
  17. 17.
    Klinkova A, De Luna P, Sargent EH et al (2017) Enhanced electrocatalytic performance of palladium nanoparticles with high energy surfaces in formic acid oxidation. J Mater Chem A 5:11582–11585.  https://doi.org/10.1039/c7ta00902j CrossRefGoogle Scholar
  18. 18.
    Jin M, Liu H, Zhang H et al (2011) Synthesis of Pd nanocrystals enclosed by 100 facets and with sizes < 10 nm for application in CO oxidation. Nano Res 4:83–91.  https://doi.org/10.1007/s12274-010-0051-3 CrossRefGoogle Scholar
  19. 19.
    Hoshi N, Kida K, Nakamura M et al (2006) Structural effects of electrochemical oxidation of formic acid on single crystal electrodes of palladium. J Phys Chem B 110:12480–12484.  https://doi.org/10.1021/jp0608372 CrossRefGoogle Scholar
  20. 20.
    Zhang HUI, Jin M, Xiong Y et al (2013) Shape-controlled synthesis of Pd nanocrystals and their catalytic applications. Acc Chem Res 46:1783–1794.  https://doi.org/10.1021/ar300209w CrossRefGoogle Scholar
  21. 21.
    Zhang X, Yin H, Wang J et al (2013) Shape-dependent electrocatalytic activity of monodispersed palladium nanocrystals toward formic acid oxidation. Nanoscale 5:8392–8397.  https://doi.org/10.1039/c3nr03100d CrossRefGoogle Scholar
  22. 22.
    Naresh N, Wasim FGS, Ladewig BP, Neergat M (2013) Removal of surfactant and capping agent from Pd nanocubes (Pd-NCs) using tert-butylamine: its effect on electrochemical characteristics. J Mater Chem A 1:8553–8559.  https://doi.org/10.1039/c3ta11183k CrossRefGoogle Scholar
  23. 23.
    Popa C, Zhu T, Tranca I et al (2015) Structure of palladium nanoparticles under oxidative conditions. Phys Chem Chem Phys 17:2268–2273.  https://doi.org/10.1039/c4cp01761g CrossRefGoogle Scholar
  24. 24.
    Elechiguerra JL, Reyes-Gasga J, Yacaman MJ (2006) The role of twinning in shape evolution of anisotropic noble metal nanostructures. J Mater Chem 16:3906–3919.  https://doi.org/10.1039/b607128g CrossRefGoogle Scholar
  25. 25.
    Xiong Y, McLellan JM, Chen J et al (2005) Kinetically controlled synthesis of triangular and hexagonal nanoplates of palladium and their SPR/SERS properties. J Am Chem Soc 127:17118–17127.  https://doi.org/10.1021/ja056498s CrossRefGoogle Scholar
  26. 26.
    Hong JW, Lee S-U, Lee YW, Han SW (2012) Hexoctahedral Au nanocrystals with high-index facets and their optical and surface-enhanced raman scattering properties. J Am Chem Soc 134:4565–4568.  https://doi.org/10.1021/ja300598u CrossRefGoogle Scholar
  27. 27.
    Xia Y, Xiong Y, Lim B, Skrabalak SE (2009) Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew Chemie Int Ed 48:60–103.  https://doi.org/10.1002/anie.200802248 CrossRefGoogle Scholar
  28. 28.
    Xiong Y, McLellan JM, Yin Y, Xia Y (2007) Synthesis of palladium icosahedra with twinned structure by blocking oxidative etching with citric acid or citrate ions. Angew Chemie Int Ed 46:790–794.  https://doi.org/10.1002/anie.200604032 CrossRefGoogle Scholar
  29. 29.
    Shipilin M, Gustafson J, Zhang C et al (2015) Transient structures of PdO during CO oxidation over Pd(100). J Phys Chem C 119:15469–15476.  https://doi.org/10.1021/acs.jpcc.5b04400 CrossRefGoogle Scholar
  30. 30.
    Hu G, Nitze F, Gracia-Espino E et al (2014) Small palladium islands embedded in palladium–tungsten bimetallic nanoparticles form catalytic hotspots for oxygen reduction. Nat Commun 5:5253.  https://doi.org/10.1038/ncomms6253 CrossRefGoogle Scholar
  31. 31.
    Zhang P, Sham TK (2003) X-ray studies of the structure and electronic behavior of alkanethiolate-capped gold nanoparticles: the interplay of size and surface effects. Phys Rev Lett 90:245502.  https://doi.org/10.1103/PhysRevLett.90.245502 CrossRefGoogle Scholar
  32. 32.
    Lykhach Y, Kozlov SM, Skála T et al (2016) Counting electrons on supported nanoparticles. Nat Mater 15:284–288.  https://doi.org/10.1038/nmat4500 CrossRefGoogle Scholar
  33. 33.
    Ishimoto T, Koyama M (2016) Electronic structure and phase stability of PdPt nanoparticles. J Phys Chem Lett 7:736–740.  https://doi.org/10.1021/acs.jpclett.5b02753 CrossRefGoogle Scholar
  34. 34.
    Sengar SK, Mehta BR, Gupta G (2011) Charge transfer, lattice distortion, and quantum confinement effects in Pd, Cu, and Pd–Cu nanoparticles; Size and alloying induced modifications in binding energy. Appl Phys Lett 98:1–4.  https://doi.org/10.1063/1.3590272 CrossRefGoogle Scholar
  35. 35.
    Sengar SK, Mehta BR, Kulriya PK, Khan SA (2013) Enhanced hydrogenation and reduced lattice distortion in size selected Pd–Ag and Pd–Cu alloy nanoparticles. Appl Phys Lett 103:173107.  https://doi.org/10.1063/1.4826580 CrossRefGoogle Scholar
  36. 36.
    Ketteler G, Ogletree DF, Bluhm H et al (2005) In situ spectroscopic study of the oxidation and reduction of Pd(111). J Am Chem Soc 127:18269–18273.  https://doi.org/10.1021/ja055754y CrossRefGoogle Scholar
  37. 37.
    Chen L, Yelon A, Sacher E (2011) X-ray photoelectron spectroscopic studies of Pd nanoparticles deposited onto highly oriented pyrolytic graphite: interfacial interaction, spectral asymmetry, and size determination. J Phys Chem C 115:7896–7905.  https://doi.org/10.1021/jp1119266 CrossRefGoogle Scholar
  38. 38.
    Qi B, Di L, Xu W, Zhang X (2014) Dry plasma reduction to prepare a high performance Pd/C catalyst at atmospheric pressure for CO oxidation. J Mater Chem A 2:11885–11890.  https://doi.org/10.1039/c4ta02155j CrossRefGoogle Scholar
  39. 39.
    Gentile M, Xiao P, Abram T (2015) Palladium interaction with silicon carbide. J Nucl Mater 462:100–107.  https://doi.org/10.1016/j.jnucmat.2015.03.013 CrossRefGoogle Scholar
  40. 40.
    Moddeman WE, Bowling WC, Carter DC, Grove DR (1988) XPS surface and bulk studies of heat treated palladium in the presence of hydrogen at 150 °C. Surf Interface Anal 11:317–326.  https://doi.org/10.1002/sia.740110609 CrossRefGoogle Scholar
  41. 41.
    Wojcieszak R, Ghazzal MN, Gaigneaux EM, Ruiz P (2014) Low temperature oxidation of methanol to methyl formate over Pd nanoparticles supported on γ-Fe2O3. Catal Sci Technol 4:738–745.  https://doi.org/10.1039/c3cy00859b CrossRefGoogle Scholar
  42. 42.
    Carro P, Corthey G, Rubert AA et al (2010) The complex thiol–palladium interface: a theoretical and experimental study. Langmuir 26:14655–14662.  https://doi.org/10.1021/la102505c CrossRefGoogle Scholar
  43. 43.
    Zhang D, Jin C, Tian H et al (2017) An in situ TEM study of the surface oxidation of palladium nanocrystals assisted by electron irradiation. Nanoscale 9:6327–6333.  https://doi.org/10.1039/C6NR08763A CrossRefGoogle Scholar
  44. 44.
    Ringe E, Van Duyne RP, Marks LD (2013) Kinetic and Thermodynamic modified Wulff constructions for twinned nanoparticles. J Phys Chem C 117:15859–15870.  https://doi.org/10.1021/jp401566m CrossRefGoogle Scholar
  45. 45.
    Leite ER, Ribeiro C (2012) Basic principles: thermodynamics and colloidal chemistry. Springer, New York, pp 7–17Google Scholar
  46. 46.
    Taylor MG, Mpourmpakis G (2017) Thermodynamic stability of ligand-protected metal nanoclusters. Nat Commun 8:15988.  https://doi.org/10.1038/ncomms15988 CrossRefGoogle Scholar
  47. 47.
    Wan X-K, Wang J-Q, Nan Z-A, Wang Q-M (2017) Ligand effects in catalysis by atomically precise gold nanoclusters. Sci Adv 3:e1701823.  https://doi.org/10.1126/sciadv.1701823 CrossRefGoogle Scholar
  48. 48.
    Weissmüller J (2002) Thermodynamics of nanocrystalline solids. In: Nanocrystalline metals and oxides. Kluwer Academic Publishers, Boston, pp 1–39Google Scholar
  49. 49.
    Wulff G (1901) XXV. Zur Frage der Geschwindigkeit des Wachsthums und der Auflösung der Krystallflächen. Zeitschrift für Krist Cryst Mater 34:449–530.  https://doi.org/10.1524/zkri.1901.34.1.449 CrossRefGoogle Scholar
  50. 50.
    Chin YHC, García-Diéguez M, Iglesia E (2016) Dynamics and thermodynamics of Pd–PdO phase transitions: effects of Pd cluster size and kinetic implications for catalytic methane combustion. J Phys Chem C 120:1446–1460.  https://doi.org/10.1021/acs.jpcc.5b06677 CrossRefGoogle Scholar
  51. 51.
    Zhou X, Andoy NM, Liu G et al (2012) Quantitative super-resolution imaging uncovers reactivity patterns on single nanocatalysts. Nat Nanotechnol 7:237–241.  https://doi.org/10.1038/nnano.2012.18 CrossRefGoogle Scholar
  52. 52.
    Yang S, Yang BX, Wu L et al (2014) Titania single crystals with a curved surface. Nat Commun 5:5355.  https://doi.org/10.1038/ncomms6355 CrossRefGoogle Scholar
  53. 53.
    Wang X, Yang J, Yin H et al (2013) “Raisin Bun”-like nanocomposites of palladium clusters and porphyrin for superior formic acid oxidation. Adv Mater 25:2728–2732.  https://doi.org/10.1002/adma.201205168 CrossRefGoogle Scholar
  54. 54.
    Saxena N, Praneeth NVS, Rao KJ, Paria S (2018) Organization of palladium nanoparticles into fractal patterns for highly enhanced catalytic activity and anode material for direct borohydride fuel cells applications. ACS Appl Energy Mater 1:2164–2175.  https://doi.org/10.1021/acsaem.8b00211 CrossRefGoogle Scholar
  55. 55.
    Fuku X, Modibedi M, Matinise N et al (2019) Single step synthesis of bio-inspired NiO/C as Pd support catalyst for dual application: alkaline direct ethanol fuel cell and CO2 electro-reduction. J Colloid Interface Sci 545:138–152.  https://doi.org/10.1016/j.jcis.2019.03.030 CrossRefGoogle Scholar
  56. 56.
    Xu J, Liu X, Chen Y et al (2012) Platinum–cobalt alloy networks for methanol oxidation electrocatalysis. J Mater Chem 22:23659–23667.  https://doi.org/10.1039/c2jm35649j CrossRefGoogle Scholar
  57. 57.
    Guo JW, Zhao TS, Prabhuram J et al (2005) Preparation and characterization of a PtRu/C nanocatalyst for direct methanol fuel cells. Electrochim Acta 51:754–763.  https://doi.org/10.1016/j.electacta.2005.05.056 CrossRefGoogle Scholar
  58. 58.
    Ma Y, Wang R, Wang H et al (2013) The effect of PtRuIr nanoparticle crystallinity in electrocatalytic methanol oxidation. Materials (Basel) 6:1621–1631.  https://doi.org/10.3390/ma6051621 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Dr. Shanti Swarup Bhatnagar University Institute of Chemical Engineering and TechnologyPanjab UniversityChandigarhIndia
  2. 2.Centre for Nanoscience and Nanotechnology, U.I.E.A.S.TPanjab UniversityChandigarhIndia
  3. 3.Energy Research CentrePanjab UniversityChandigarhIndia

Personalised recommendations