Advertisement

Chitosan-derived hybrid porous carbon with the novel tangerine pith-like surface as supercapacitor electrode

  • Mengying Yuan
  • Yunqiang ZhangEmail author
  • Ben Niu
  • Feng Jiang
  • Xuena Yang
  • Mei LiEmail author
Electronic materials
  • 9 Downloads

Abstract

A novel hybrid porous carbon has been synthesized by a facile method blending chitosan with gelatin in acetic acid solution. Gelatin changes the morphology of the chitosan-derived carbon materials and produces abundant micro- and mesopores with the help of KHCO3. More importantly, gelatin brings heteroatoms and pseudo-capacitance into hybrids to improve the capacitive performance as the nitrogen source. A unique tangerine pith-like morphology comes into being on the chitosan-derived hybrid porous carbon, and there are lots of interconnected micropores forming with high specific surface area of 927.17 m2 g−1. This particular morphology, high nitrogen content and specific surface area ensure the as-obtained carbon electrode wonderful capacitive performance with specific capacitance of 331 F g−1 in 6 mol L−1 KOH electrolyte at 1 A g−1, high retention of 73% and excellent capacity stability of 90% after 10000 cycles at 10 A g−1. Additionally, the chitosan-derived hybrid porous carbon shows remarkable energy density of 34 W h kg−1 with the power density of 900 W kg−1, superior to majority of the commercial devices. The simple and efficient strategy and the excellent electrochemical performance are of great significance to the large-scale application of biomass-based supercapacitors.

Notes

Acknowledgements

This study was supported by the International Cooperation Foundation of Qilu University of Technology (QLUTGJHZ2018023) and International Intelligent Foundation of Qilu University of Technology (QLUTGJYZ2018024).

Supplementary material

10853_2019_3911_MOESM1_ESM.docx (974 kb)
Supplementary material 1 (DOCX 973 kb)

References

  1. 1.
    Wu D, Wang Y, Wang F, Wang H, An Y, Gao Z, Fang X, Kai J (2017) Oxygen-incorporated few-layer MoS2 vertically aligned on three-dimensional graphene matrix for enhanced catalytic performances in quantum dot sensitized solar cells. Carbon 123:756–766CrossRefGoogle Scholar
  2. 2.
    Wang J, Ma KY, Zhang J, Liu F, Cheng JP (2017) Template-free synthesis of hierarchical hollow NiSx microspheres for supercapacitor. J Colloid Interface Sci 507:290CrossRefGoogle Scholar
  3. 3.
    Chen A, Yu Y, Xing T, Wang R, Zhang Y, Li Q (2015) Synthesis of graphitic carbon spheres for enhanced supercapacitor performance. J Mater Sci 50:5578–5582.  https://doi.org/10.1007/s10853-015-9106-x CrossRefGoogle Scholar
  4. 4.
    Zhang G, Song Y, Hang Z, Jia X, Duan H, Liu J (2016) Nanotube arrays: radially aligned porous carbon nanotube arrays on carbon fibers: a hierarchical 3D carbon nanostructure for high-performance capacitive energy storage. Adv Funct Mater 26:2978CrossRefGoogle Scholar
  5. 5.
    Chen J, Chang B, Liu F, Wei H, Wei W, Lin H, Han S (2019) Modification of porous carbon with nitrogen elements to enhance the capacitance of supercapacitors. J Mater Sci 54:11959–11971.  https://doi.org/10.1007/s10853-019-03748-6 CrossRefGoogle Scholar
  6. 6.
    Si W, Zhou J, Zhang S, Li S, Xing W, Zhuo S (2013) Tunable N-doped or dual N, S-doped activated hydrothermal carbons derived from human hair and glucose for supercapacitor applications. Electrochim Acta 107:397–405CrossRefGoogle Scholar
  7. 7.
    Zhao X, Gnanaseelan M, Jehnichen D, Simon F, Pionteck J (2019) Green and facile synthesis of polyaniline/tannic acid/rGO composites for supercapacitor purpose. J Mater Sci 54:10809–10824.  https://doi.org/10.1007/s10853-019-03654-x CrossRefGoogle Scholar
  8. 8.
    Liu M, Niu J, Zhang Z, Dou M, Wang F (2018) Potassium compound-assistant synthesis of multi-heteroatom doped ultrathin porous carbon nanosheets for high performance supercapacitors. Nano Energy 51:366–372CrossRefGoogle Scholar
  9. 9.
    Huang J, Cao D, Lei T, Yang S, Zhou X, Xu P, Wang G (2013) Structural and electrochemical performance of Al-substituted β-Ni(OH)2 nanosheets electrodes for nickel metal hydride battery. Electrochim Acta 111:713–719CrossRefGoogle Scholar
  10. 10.
    Sarkar A, Chakraborty AK, Bera S, Krishnamurthy S (2018) Novel hydrothermal synthesis of CoS2/MWCNT nanohybrid electrode for supercapacitor: a systematic investigation on the influence of MWCNT. J Phys Chem C 122:18237–18246CrossRefGoogle Scholar
  11. 11.
    Zhang Y, Xuan L, Wang S, Li L, Dou S (2017) Bio-nanotechnology in high-performance supercapacitors. Adv Energy Mater 7:1700592CrossRefGoogle Scholar
  12. 12.
    Wang P, Zhang G, Chen W, Jiao H, Liu L, Wang X, Deng X, Chen Q (2018) Highly porous carbon derived from litchi pericarp for supercapacitors application. J Mater Sci Mater Electron 29:14981–14988Google Scholar
  13. 13.
    Lei P, Wang Y, Han H, Li X, Liu J, Lu G, Wei T, Wang X et al (2018) 3D self-assembly synthesis of hierarchical porous carbon from petroleum asphalt for supercapacitors. Carbon 134:345–353CrossRefGoogle Scholar
  14. 14.
    Wang RT, Wang PY, Yan XB, Lang JW, Peng C, Xue QJ (2012) Promising porous carbon derived from celtuce leaves with outstanding supercapacitance and CO2 capture performance. ACS Appl Mater Interfaces 4:5800CrossRefGoogle Scholar
  15. 15.
    Chao Z, Zhou X, Cao H, Wang G, Liu Z (2014) Synthesis of porous graphene/activated carbon composite with high packing density and large specific surface area for supercapacitor electrode material. J Power Sour 258:290–296CrossRefGoogle Scholar
  16. 16.
    Chao W, Jiang X, Ding J, Yuan N, Yan P, Zhang R, Liu H (2016) High-performance supercapacitor based on the NaOH activated d-glucose derived carbon. NANO 11:1650075CrossRefGoogle Scholar
  17. 17.
    Hirotomo N, Takashi K (2012) Templated nanocarbons for energy storage. Adv Mater 24:4473–4498CrossRefGoogle Scholar
  18. 18.
    Gao Y, Zhang W, Yue Q, Gao B, Sun Y, Kong J, Zhao P (2014) Simple synthesis of hierarchical porous carbon from Enteromorpha prolifera by a self-template method for supercapacitor electrodes. J Power Sour 270:403–410CrossRefGoogle Scholar
  19. 19.
    Deng J, Xiong TY, Xu F, Li MM, Han CL, Gong YT, Wang HY, Wang Y (2015) Inspired by bread leavening: one-pot synthesis of hierarchically porous carbon for supercapacitors. Green Chem 17:4053–4060CrossRefGoogle Scholar
  20. 20.
    Yunpu Z, Yuqian D, Dongyuan Z, Fulvio PF, Mayes RT, Sheng D (2011) Carbon materials for chemical capacitive energy storage. Adv Mater 23:4828–4850CrossRefGoogle Scholar
  21. 21.
    Zhang Y, Liu L, Zhang L, Yu Y, Lv H, Chen A (2019) Template-free method for fabricating carbon nanotube combined with thin N-doped porous carbon composite for supercapacitor. J Mater Sci 54:6451–6460.  https://doi.org/10.1007/s10853-018-03290-x CrossRefGoogle Scholar
  22. 22.
    Fan M, Cheng Y, Tu W, Zhang H (2019) Fabrication of nitrogen-doped hollow carbon nanospheres with variable nitrogen contents using mixed polymer brushes as precursors. J Mater Sci 54:8121–8132.  https://doi.org/10.1007/s10853-019-03320-2 CrossRefGoogle Scholar
  23. 23.
    Li Z, Li-Zhen F, Meng-Qi Z, Hui G, Suyan Q, Markus A, Maria-Magdalena T (2010) Nitrogen-containing hydrothermal carbons with superior performance in supercapacitors. Adv Mater 22:5202–5206CrossRefGoogle Scholar
  24. 24.
    Sun Q, Li Y, He T (2019) The excellent capacitive capability for N, P-doped carbon microsphere/reduced graphene oxide nanocomposites in H2SO4/KI redox electrolyte. J Mater Sci 54:7665–7678CrossRefGoogle Scholar
  25. 25.
    Ferrero GA, Fuertes AB, Sevilla M (2015) N-doped porous carbon capsules with tunable porosity for high-performance supercapacitors. J Mater Chem A 3:2914–2923CrossRefGoogle Scholar
  26. 26.
    Lee YH, Lee YF, Chang KH, Hu CC (2011) Synthesis of N-doped carbon nanosheets from collagen for electrochemical energy storage/conversion systems. Electrochem Commun 13:50–53CrossRefGoogle Scholar
  27. 27.
    Gao S, Chen Y, Fan H, Wei X, Hu C, Luo H, Qu L (2014) Large scale production of biomass-derived N-doped porous carbon spheres for oxygen reduction and supercapacitors. J Mater Chem A 2:3317–3324CrossRefGoogle Scholar
  28. 28.
    Maria-Magdalena T, White Titirici RJ, Brun N, Budarin VL, Su DS, Del Monte F, Clark JH, Maclachlan M (2014) Sustainable carbon materials. Chem Soc Rev 44:250–290Google Scholar
  29. 29.
    Liang T, Chen C, Li X, Zhang J (2016) Popcorn-derived porous carbon for energy storage and CO2 capture. Langmuir 32:8042–8049CrossRefGoogle Scholar
  30. 30.
    Biswal M, Banerjee A, Deo M, Ogale S (2013) From dead leaves to high energy density supercapacitors. Energy Environ Sci Technol 6:1249–1259CrossRefGoogle Scholar
  31. 31.
    Raymundo-Piñero E, Cadek M, Béguin F (2009) Tuning carbon materials for supercapacitors by direct pyrolysis of seaweeds. Adv Funct Mater 19:1032–1039CrossRefGoogle Scholar
  32. 32.
    Lota K, Acznik I, Sierczynska A, Lota G (2016) The capacitance properties of activated carbon obtained from chitosan as the electrode material for electrochemical capacitors. Mater Lett 173:72–75CrossRefGoogle Scholar
  33. 33.
    Zhang F, Liu T, Hou G, Kou T, Yue L, Guan R, Li Y (2016) Hierarchically porous carbon foams for electric double layer capacitors. Nano Res 9:2875–2888CrossRefGoogle Scholar
  34. 34.
    Ling Z, Yu C, Fan X, Liu S, Yang J, Zhang M, Wang G, Xiao N et al (2015) Freeze-drying for sustainable synthesis of nitrogen doped porous carbon cryogel with enhanced supercapacitor and lithium ion storage performance. Nanotechnology 26:374003CrossRefGoogle Scholar
  35. 35.
    Chen Z, Kai L, Sheng L, Lu X, Fu J, Zhang X, Zhang C, Gao B (2017) Porous active carbon layer modified graphene for high-performance supercapacitor. Electrochim Acta 237:102–108CrossRefGoogle Scholar
  36. 36.
    Xu B, Hou S, Cao G, Feng W, Yang Y (2012) Sustainable nitrogen-doped porous carbon with high surface areas prepared from gelatin for supercapacitors. J Mater Chem A 22:19088–19093CrossRefGoogle Scholar
  37. 37.
    Yoon S-H, Lim S, Song Y, Ota Y, Qiao W, Tanaka A, Mochida I (2004) KOH activation of carbon nanofibers. Carbon 42:1723–1729CrossRefGoogle Scholar
  38. 38.
    Yanwu Z, Shanthi M, Stoller MD, Ganesh KJ, Weiwei C, Ferreira PJ, Adam P, Wallace RM et al (2011) Carbon-based supercapacitors produced by activation of graphene. Science 332:1537CrossRefGoogle Scholar
  39. 39.
    Fan X, Zhang W, Qiu J (2015) A layered-nanospace-confinement strategy for the synthesis of two-dimensional porous carbon nanosheets for high-rate performance supercapacitors. Adv Energy Mater 5:1401761CrossRefGoogle Scholar
  40. 40.
    Kurosaki F, Koyanaka H, Tsujimoto M, Imamura Y (2008) Shape-controlled multi-porous carbon with hierarchical micro–meso-macro pores synthesized by flash heating of wood biomass. Carbon 46:850–857CrossRefGoogle Scholar
  41. 41.
    Ue M (1994) Mobility and ionic association of lithium and quaternary ammonium salts in propylene carbonate and γ-butyrolactone. J Electrochem Soc 141(12):3336–3342CrossRefGoogle Scholar
  42. 42.
    Mei L, Zhang Y, Yang L, Liu Y, Yao J (2015) Hollow melamine resin-based carbon spheres/graphene composite with excellent performance for supercapacitors. Electrochim Acta 166:310–319CrossRefGoogle Scholar
  43. 43.
    Wang H, Yi H, Zhu C, Wang X, Hong JF (2015) Functionalized highly porous graphitic carbon fibers for high-rate supercapacitive electrodes. Nano Energy 13:658–669CrossRefGoogle Scholar
  44. 44.
    Chao L, Wang D, Zhao J, Song H, Wei C (2017) A continuous carbon nitride polyhedron assembly for high-performance flexible supercapacitors. Adv Funct Mater 27:1606219CrossRefGoogle Scholar
  45. 45.
    Wei H, Chen H, Ning F, Jing C, Lan G, Wei Q, Liu Y, Lin H et al (2017) Excellent electrochemical properties and large CO2 capture of nitrogen-doped activated porous carbon synthesised from waste longan shells. Electrochim Acta 231:403–411CrossRefGoogle Scholar
  46. 46.
    Zhang Y, Liu X, Wang S, Dou SX, Li L (2016) Interconnected honeycomb-like porous carbon derived from plane tree fluff for high performance supercapacitors. J Mater Chem A 4:10869CrossRefGoogle Scholar
  47. 47.
    Yan W, Alsmeyer DC, Mccreery RL (2002) Raman spectroscopy of carbon materials: structural basis of observed spectra. J Mater Chem A 2:557–563Google Scholar
  48. 48.
    Jutao J, Xiaogang F, Qiao L, Yanru L, Zhiyang W, Kexing N, Junyan Z (2013) Identifying the active site in nitrogen-doped graphene for the VO2 +/VO2(+) redox reaction. ACS Nano 7:4764CrossRefGoogle Scholar
  49. 49.
    Qian W, Sun F, Xu Y, Qiu L, Liu C, Wang S, Feng Y (2013) Human hair-derived carbon flakes for electrochemical supercapacitors. Energy Environ Sci 7:379–386CrossRefGoogle Scholar
  50. 50.
    Xiang S, Yang X, Lin X, Chang C, Que H, Mei L (2017) Nitrogen and sulfur co-doped polyurethane-based porous carbon materials as supercapacitors exhibit excellent electrochemical performance. J Solid State Electrochem 21:1457–1465CrossRefGoogle Scholar
  51. 51.
    Yi J, Yan Q, Wu CT, Zeng Y, Wu Y, Lu X, Tong Y (2017) Lignocellulose-derived porous phosphorus-doped carbon as advanced electrode for supercapacitors. J Power Sour 351:130–137CrossRefGoogle Scholar
  52. 52.
    Bin DS, Chi ZX, Li Y, Zhang K, Yang X, Sun YG, Piao JY, Cao AM et al (2017) Controlling the compositional chemistry in single nanoparticles for functional hollow carbon nanospheres. J Am Chem Soc 139:13492–13498CrossRefGoogle Scholar
  53. 53.
    Chen P, Yang JJ, Li SS, Wang Z, Xiao TY, Qian YH, Yu SH (2013) Hydrothermal synthesis of macroscopic nitrogen-doped graphene hydrogels for ultrafast supercapacitor. Nano Energy 2:249–256CrossRefGoogle Scholar
  54. 54.
    Fang Y, Gu D, Zou Y, Wu Z, Li F, Che R, Deng Y, Tu B et al (2010) A low-concentration hydrothermal synthesis of biocompatible ordered mesoporous carbon nanospheres with tunable and uniform size. Angewandte Chemie International Editon 49:7987–7991CrossRefGoogle Scholar
  55. 55.
    Feng H, Hang H, Dong H, Yong X, Cai Y, Lei B, Liu Y, Zheng M (2016) Hierarchical structured carbon derived from bagasse wastes: a simple and efficient synthesis route and its improved electrochemical properties for high-performance supercapacitors. J Power Sour 302:164–173CrossRefGoogle Scholar
  56. 56.
    Fan Y, Yang X, Zhu B, Liu PF, Lu HT (2014) Micro-mesoporous carbon spheres derived from carrageenan as electrode material for supercapacitors. J Power Sour 268:584–590CrossRefGoogle Scholar
  57. 57.
    Kondrat S, Pérez CR, Presser V, Gogotsi Y, Kornyshev AA (2012) Effect of pore size and its dispersity on the energy storage in nanoporous supercapacitors. Energy Environ Sci 5:6474–6479CrossRefGoogle Scholar
  58. 58.
    Ullah S, Khan IA, Choucair M, Badshah A, Khan I, Nadeem MA (2015) A novel Cr2O3-carbon composite as a high performance pseudo-capacitor electrode material. Electrochim Acta 171:142–149CrossRefGoogle Scholar
  59. 59.
    Chang C, Yang X, Xiang S, Lin X, Que H, Mei L (2017) Nitrogen and sulfur co-doped glucose-based porous carbon materials with excellent electrochemical performance for supercapacitors. J Electrochem Soc 164:A1601–A1607CrossRefGoogle Scholar
  60. 60.
    Liang Q, Ye L, Xu Q, Huang ZH, Kang F, Yang QH (2015) Graphitic carbon nitride nanosheet-assisted preparation of N-enriched mesoporous carbon nanofibers with improved capacitive performance. Carbon 94:342–348CrossRefGoogle Scholar
  61. 61.
    Xia Y, Zhang W, Xiao Z, Huang H, Zeng H, Chen X, Chen F, Gan Y et al (2012) Biotemplated fabrication of hierarchically porous NiO/C composite from lotus pollen grains for lithium-ion batteries. J Mater Chem 22:9209–9215CrossRefGoogle Scholar
  62. 62.
    Zhao M, Cui X, Chen L, Xu Y, He Z, Yang S, Yi W (2018) An ordered mesoporous carbon nanosphere-encapsulated graphene network with optimized nitrogen doping for enhanced supercapacitor performance. Nanoscale 10:15379–15386CrossRefGoogle Scholar
  63. 63.
    Xie B, Chen Y, Yu M, Shen X, Lei H, Xie T, Zhang Y, Wu Y (2015) Carboxyl-assisted synthesis of nitrogen-doped graphene sheets for supercapacitor applications. Nanoscale Res Lett 10:332CrossRefGoogle Scholar
  64. 64.
    Hui S, Zhu Y, Bo Y, Wang Y, Wu YP, Du J (2016) Template-free fabrication of nitrogen-doped hollow carbon spheres for high-performance supercapacitors based on a scalable homopolymer vesicle. J Mater Chem A 4:12088–12097CrossRefGoogle Scholar
  65. 65.
    Ba Y, Wei P, Pi S, Zhao Y, Mi L (2018) Nitrogen-doped hierarchical porous carbon derived from a chitosan/polyethylene glycol blend for high performance supercapacitors. RSC Adv 8:7072–7079CrossRefGoogle Scholar
  66. 66.
    Zhu L, Feng S, Smith RL, Qi X (2016) High-performance supercapacitor electrode materials from chitosan via hydrothermal carbonization and potassium hydroxide activation. Energy Technol 5:1–10Google Scholar
  67. 67.
    Li B, Cheng Y, Dong L, Wang Y, Chen J, Huang C, Wei D, Feng Y et al (2017) Nitrogen doped and hierarchically porous carbons derived from chitosan hydrogel via rapid microwave carbonization for high-performance supercapacitors. Carbon 122:592–603CrossRefGoogle Scholar
  68. 68.
    Huang J, Liang Y, Hang H, Liu S, Cai Y, Dong H, Zheng M, Yong X et al (2017) Ultrahigh-surface-area hierarchical porous carbon from chitosan: acetic acid mediated efficient synthesis and its application in superior supercapacitor. J Mater Chem A 5:24775–24781CrossRefGoogle Scholar
  69. 69.
    Hou J, Cao C, Idrees F, Ma X (2015) Hierarchical porous nitrogen-doped carbon nanosheets derived from silk for ultrahigh-capacity battery anodes and supercapacitors. ACS Nano 9:2556CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringQilu University of Technology (Shandong Academy of Sciences)JinanPeople’s Republic of China
  2. 2.Shandong Provincial Key Laboratory of Processing and Testing Technology of Glass and Functional CeramicsJinanPeople’s Republic of China
  3. 3.Key Laboratory of Amorphous and Polycrystalline MaterialsQilu University of Technology (Shandong Academy of Sciences)JinanPeople’s Republic of China

Personalised recommendations