The piezoelectric and dielectric properties of flexible, nanoporous, self-assembled boron nitride nanotube thin films

  • Chuncheng Ban
  • Xiangqian Jiang
  • Ling LiEmail author
  • Xiaowei Liu
Electronic materials


Boron nitride nanotubes (BNNTs) are one-dimensional dielectric and piezoelectric nanomaterials with non-cytotoxic properties and superb chemical and thermal stabilities. Regarding practical applications, a flexible, nanoporous, self-assembled film is one of the most low-cost usable structures. Here, we reveal a unique nanocatalyst-assisted ink spray coating method to synthesize 4.69-eV optical bandgap NTs and an easy mechanical peeling method to obtain an attractive nanoporous freestanding NT thin film with high flexibility and 91.45% porosity. Importantly, the piezoelectric d33 coefficient of the 90-nm-radius NT is 41.12 pm V−1, more than triple the value reported previously, due to the inner bamboo structure, and this coefficient is a function of radius. The nanoporous bamboo-type NT film shows excellent dielectric properties, with a relation dielectric constant of 5.15 and a dielectric constant of 9.78 for the solid type (ignoring air), which is more than triple the value of the cylindrical type. Moreover, the capacitance loss and electrical conductance versus frequency have great potential for a dielectric layer under high-frequency capacitance. Hence, bamboo-type BNNTs and their films can reasonably be widely applied in flexible electronic devices, high-precision piezoelectric sensors, and intelligent bioelectronic devices in harsh environments.



This research was supported by the Joint Space Science and Technology Fund, No. 6141B06260302, the National Natural Science Funds of China, Grant No. 61404036, and the Equipment Pre-Research United Foundation of Space Technology, No. 61404140404.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10853_2019_3906_MOESM1_ESM.docx (2 mb)
Supplementary material 1 (DOCX 2059 kb)


  1. 1.
    Koi N, Oku T, Inoue M, Suganuma K (2008) Structures and purification of boron nitride nanotubes synthesized from boron-based powders with iron particles. J Mater Sci 43(8):2955–2961. CrossRefGoogle Scholar
  2. 2.
    Gleiman S, Chen C-K, Datye A, Phillips J (2002) Melting and spheroidization of hexagonal boron nitride in a microwave-powered, atmospheric pressure nitrogen plasma. J Mater Sci 37(16):3429–3440. CrossRefGoogle Scholar
  3. 3.
    Njuguna J, Pielichowski K (2010) Polymer nanocomposites for aerospace applications: properties. Adv Eng Mater 5:769–778CrossRefGoogle Scholar
  4. 4.
    Pirich CL, Freitas RAD, Torresi RM, Picheth GF, Sierakowski MR (2017) Piezoelectric immunochip coated with thin films of bacterial cellulose nanocrystals for dengue detection. Biosens Bioelectron 92:47–53CrossRefGoogle Scholar
  5. 5.
    Randall JP, Meador MAB, Jana SC (2011) Tailoring mechanical properties of aerogels for aerospace applications. ACS Appl Mater Interfaces 3:613–626CrossRefGoogle Scholar
  6. 6.
    Zhi C, Bando Y, Terao T, Tang C, Kuwahara H, Golberg D (2009) Towards thermoconductive, electrically insulating polymeric composites with boron nitride nanotubes as fillers. Adv Funct Mater 19:1857–1862CrossRefGoogle Scholar
  7. 7.
    Perdana IRW, Al-Hadi AA, Bukhari MZ (2016) The shielding materials from EM radiation for aircraft fuselage. Mater Sci Forum 857:598–602CrossRefGoogle Scholar
  8. 8.
    Ciofani G, Danti S, D’Alessandro D, Moscato S, Menciassi A (2010) Assessing cytotoxicity of boron nitride nanotubes: interference with the MTT assay. Biochem Biophys Res Commun 394:405–411CrossRefGoogle Scholar
  9. 9.
    Ciofani G, Ricotti L, Danti S et al (2010) Investigation of interactions between poly-l-lysine-coated boron nitride nanotubes and C2C12 cells: up-take, cytocompatibility, and differentiation. Int J Nanomed 5:285–298CrossRefGoogle Scholar
  10. 10.
    Kostoglou N, Polychronopoulou K, Rebholz C (2015) Thermal and chemical stability of hexagonal boron nitride (h-BN) nanoplatelets. Vacuum 112:42–45CrossRefGoogle Scholar
  11. 11.
    Ciofani G, Raffa V, Menciassi A, Cuschieri A (2009) Boron nitride nanotubes: an innovative tool for nanomedicine. Nano Today 4:8–10CrossRefGoogle Scholar
  12. 12.
    Kang JH, Sauti G, Park C et al (2015) Multifunctional electroactive nanocomposites based on piezoelectric boron nitride nanotubes. ACS Nano 9:11942–11950CrossRefGoogle Scholar
  13. 13.
    Nakhmanson SM, Calzolari A, Meunier V, Bernholc J, Nardelli MB (2003) Spontaneous polarization and piezoelectricity in boron nitride nanotubes. Phys Rev B 67:234506CrossRefGoogle Scholar
  14. 14.
    Lan HP, Ye LH, Zhang S, Peng LM (2009) Transverse dielectric properties of boron nitride nanotubes by ab initio electric field calculations. Appl Phys Lett 94:183110CrossRefGoogle Scholar
  15. 15.
    Blase X, Rubio A, Louie SG, Cohen ML (2007) Stability and band gap constancy of boron nitride nanotubes. EPL 28:335–340CrossRefGoogle Scholar
  16. 16.
    Hong X, Wang D, Chung DDL (2016) Boron nitride nanotube mat as a low-k dielectric material with relative dielectric constant ranging from 1.0 to 1.1. J Electron Mater 45(1):453–461CrossRefGoogle Scholar
  17. 17.
    Oku T, Narita I, Nishiwaki A (2006) Atomic structures of bamboo-type boron nitride nanotubes with cup-stacked structures. J Eur Ceram Soc 26:443–448CrossRefGoogle Scholar
  18. 18.
    Lee H, Park J, Han SA et al (2012) The stress-dependent piezoelectric coefficient of ZnO wire measured by piezoresponse force microscopy. Scripta Mater 66:101–104CrossRefGoogle Scholar
  19. 19.
    Yu J, Yu D, Chen Y et al (2009) Narrowed bandgaps and stronger excitonic effects from small boron nitride nanotubes. Chem Phys Lett 476:240–243CrossRefGoogle Scholar
  20. 20.
    Fiume MM, Bergfeld WF, Belsito DV et al (2015) Safety assessment of talc as used in cosmetics. Int J Toxicol 34:66S–129SCrossRefGoogle Scholar
  21. 21.
    Golberg D, Bando Y, Huang Y et al (2010) Boron nitride nanotubes and nanosheets. ACS Nano 4:2979–2993CrossRefGoogle Scholar
  22. 22.
    Wirtz L, Rubio A, Concha RADL, Loiseau A (2003) Ab initio calculations of the lattice dynamics of boron nitride nanotubes. Phys Rev B 68:045425CrossRefGoogle Scholar
  23. 23.
    Jeon GS, Mahan GD (2009) Lattice vibrations of a single-wall boron nitride nanotube. Phys Rev B 79:085424CrossRefGoogle Scholar
  24. 24.
    Popov VN (2003) Lattice dynamics of single-walled boron nitride nanotubes. Phys Rev B 67:085408CrossRefGoogle Scholar
  25. 25.
    Han WQ, Yu HG, Zhi C et al (2008) Isotope effect on band gap and radiative transitions properties of boron nitride nanotubes. Nano Lett 8:491–494CrossRefGoogle Scholar
  26. 26.
    Cassabois G, Valvin P, Gil B (2016) Hexagonal boron nitride is an indirect bandgap semiconductor. Nat Photonics 10:262–266CrossRefGoogle Scholar
  27. 27.
    Watanabe K, Taniguchi T, Kanda H (2004) Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nat Mater 3:404–409CrossRefGoogle Scholar
  28. 28.
    Yan B, Yue G, Yang J, Guha S (2013) On the bandgap of hydrogenated nanocrystalline silicon intrinsic materials used in thin film silicon solar cells. Sol Energy Mater Sol Cells 111:90–96CrossRefGoogle Scholar
  29. 29.
    Aerts T, Dimogerontakis T, Graeve ID, Fransaer J, Terryn H (2007) Influence of the anodizing temperature on the porosity and the mechanical properties of the porous anodic oxide film. Surf Coat Technol 201:7310–7317CrossRefGoogle Scholar
  30. 30.
    Gan ZW, Ding XX, Huang ZX et al (2005) Growth of boron nitride nanotube film in situ. Appl Phys A 81:527–529CrossRefGoogle Scholar
  31. 31.
    Li LH, Chen Y (2010) Superhydrophobic properties of nonaligned boron nitride nanotube films. Langmuir ACS J Surf Colloids 26:5135–5140CrossRefGoogle Scholar
  32. 32.
    Ban C, Li L, Wei L (2018) Electrical properties of O-self-doped boron-nitride nanotubes and the piezoelectric effects of their freestanding network film. RSC Adv 8(51):29141–29146CrossRefGoogle Scholar
  33. 33.
    Wang S, Cao B, Teng B (2015) Torsional tribological behavior of polytetrafluoroethylene composites filled with hexagonal boron nitride and phenyl p-hydroxybenzoate under different angular displacements. Ind Lubr Tribol 67:139–149CrossRefGoogle Scholar
  34. 34.
    Ghosh M, Rao MG (2013) Growth mechanism of ZnO nanostructures for ultra-high piezoelectric d 33 coefficient. Mater Express 3:319–327CrossRefGoogle Scholar
  35. 35.
    Agronin AG, Yossi Rosenwaks A, Rosenman GI (2003) Piezoelectric coefficient measurements in ferroelectric single crystals using high voltage atomic force microscopy. Nano Lett 3:169–171CrossRefGoogle Scholar
  36. 36.
    Zhao MH, Wang ZL, Mao SX (2004) Piezoelectric characterization of individual zinc oxide nanobelt probed by piezoresponse force microscope. Nano Lett 4:587–590CrossRefGoogle Scholar
  37. 37.
    Bhavanasi V, Kusuma DY, Lee PS (2014) Polarization orientation, piezoelectricity, and energy harvesting performance of ferroelectric PVDF-TrFE nanotubes synthesized by nanoconfinement. Adv Energy Mater 4:1400723. CrossRefGoogle Scholar
  38. 38.
    Yamakov V, Park C, Jin HK, Wise KE, Fay C (2014) Piezoelectric molecular dynamics model for boron nitride nanotubes. Comput Mater Sci 95:362–370CrossRefGoogle Scholar
  39. 39.
    Egerton L, Dillon DM (2010) Piezoelectric and dielectric properties of ceramics in the system potassium—sodium niobate. J Am Ceram Soc 42:438–442CrossRefGoogle Scholar
  40. 40.
    Penn SJ, Alford NM, Templeton A et al (2010) Effect of porosity and grain size on the microwave dielectric properties of sintered alumina. J Am Ceram Soc 80:1885–1888CrossRefGoogle Scholar
  41. 41.
    Luo B, Wang X, Wang Y, Li L (2013) Fabrication, characterization, properties and theoretical analysis of ceramic/PVDF composite flexible films with high dielectric constant and low dielectric loss. J Mater Chem A 2:510–519CrossRefGoogle Scholar
  42. 42.
    Huang X, Zhi C, Jiang P, Golberg D, Bando Y, Tanaka T (2013) Polyhedral oligosilsesquioxane-modified boron nitride nanotube based epoxy nanocomposites: an ideal dielectric material with high thermal conductivity. Adv Funct Mater 23:1824–1831CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.MEMS CenterHarbin Institute of TechnologyHarbinPeople’s Republic of China
  2. 2.Key Laboratory of Micro-systems and Micro-structures ManufacturingMinistry of EducationHarbinPeople’s Republic of China
  3. 3.State Key Laboratory of Urban Water Resource and EnvironmentHarbin Institute of TechnologyHarbinPeople’s Republic of China

Personalised recommendations