Advertisement

Journal of Materials Science

, Volume 54, Issue 22, pp 14255–14274 | Cite as

Macro- and micromechanical responses of an elastomeric membrane undergoing biaxial tension by indentation

  • I. M. Garnica-Palafox
  • M. Álvarez-Camacho
  • F. M. Sánchez-ArévaloEmail author
Polymers & biopolymers
  • 97 Downloads

Abstract

The aim of this work was to develop a methodology and a mechanical tester to determine the macro- and micromechanical behaviours of elastomers under biaxial tension by spherical indentation. Combining the Yang and Begley models, in addition to the experimental data obtained from our mechanical tester, a new methodology to understand the mechanical response of elastomers is presented; this methodology includes elastic modulus, elongation ratios and full-field micro-strain patterns of polymeric membranes undergoing biaxial tension. It was demonstrated that the micro-strain patterns, obtained through 3D digital image correlation, were heterogeneous and higher than those estimated for region contact by numerical models. After an extensive analysis, a general analytical expression that considers the complete set of load versus central displacement experimental data was found to calculate the elastic modulus of elastomers with better accuracy than traditional models. Our device and methodology could become an excellent tool to evaluate the macro- and micromechanical behaviours of soft polymers, cross-linked hydrogels and even biological tissues that exhibit rubber-like mechanical behaviour.

Notes

Acknowledgements

This work was developed with financial support from PAPIIT, DGAPA-UNAM, through Grant IN104118. The authors are grateful to Sonia Reyes Gómez for her support in latex membrane preparation and Fernando Molina and Miguel Díaz (Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México) for CNC manufacturing support. Garnica-Palafox acknowledges financial support from Conacyt during her PhD studies.

References

  1. 1.
    Selvadurai APS (2006) Deflections of a rubber membrane. J Mech Phys Solids 54(6):1093–1119CrossRefGoogle Scholar
  2. 2.
    Zhang Y (2016) Large deflection of clamped circular plate and accuracy of its approximate analytical solutions. Sci China Phys Mech Astron 59(2):624602.  https://doi.org/10.1007/s11433-015-5751-y CrossRefGoogle Scholar
  3. 3.
    Föppl A (1900) Vorlesungeu über technische mechanik. Monatshefte für Mathematik und Physik 11(1):A9–A9Google Scholar
  4. 4.
    Hencky H (1915) Über den spannungszustand in kreisrunden platten mit verschwindender biegesteifigkeit. Zeitschrift for Mathematik und Physik 63:311–317Google Scholar
  5. 5.
    Timoshenko S, Woinowsky-Krieger S, Knovel (Firm) (1959) Theory of plates and shells. McGraw-Hill, New YorkGoogle Scholar
  6. 6.
    Yang WH (1967) Stress concentration in a rubber sheet under axially symmetric stretching. J Appl Mech 34(4):942–946CrossRefGoogle Scholar
  7. 7.
    Weinitschke HJ (1980) XXXV—on axisymmetric deformations of nonlinear elastic membranes. In: Nemat-Nasser S (ed) Mechanics today. Pergamon Press, Oxford, pp 523–542CrossRefGoogle Scholar
  8. 8.
    Bhatia NM, Nachbar W (1968) Finite indentation of an elastic membrane by a spherical indenter. Int J Non-Linear Mech 3(3):307–324CrossRefGoogle Scholar
  9. 9.
    Yang WH, Hsu KH (1971) Indentation of a circular membrane. J Appl Mech 38:227–230CrossRefGoogle Scholar
  10. 10.
    Rivlin RS, Thomas AG (1951) Large elastic deformations of isotropic materials VIII. Strain distribution around a hole in a sheet. Philos Trans R Soc Lond A Math Phys Eng Sci 243(865):289–298CrossRefGoogle Scholar
  11. 11.
    Yang WH, Feng WW (1970) On axisymmetrical deformations of nonlinear membranes. J Appl Mech 37(4):1002–1011CrossRefGoogle Scholar
  12. 12.
    Liu KK, Ju BF (2001) A novel technique for mechanical characterization of thin elastomeric membrane. J Phys D Appl Phys 34(15):L91–L94CrossRefGoogle Scholar
  13. 13.
    Ju BF, Liu K-K, Ling S-F, Ng WH (2002) A novel technique for characterizing elastic properties of thin biological membrane. Mech Mater 34(11):749–754CrossRefGoogle Scholar
  14. 14.
    Ahearne M, Yang Y, El Haj AJ, Then KY, Liu K-K (2005) Characterizing the viscoelastic properties of thin hydrogel-based constructs for tissue engineering applications. J R Soc Interface 2(5):455–463CrossRefGoogle Scholar
  15. 15.
    Ahearne M, Siamantouras E, Yang Y, Liu K-K (2009) Mechanical characterization of biomimetic membranes by micro-shaft poking. J R Soc Interface 6(34):471–478CrossRefGoogle Scholar
  16. 16.
    Begley MR, Mackin TJ (2004) Spherical indentation of freestanding circular thin films in the membrane regime. J Mech Phys Solids 52(9):2005–2023CrossRefGoogle Scholar
  17. 17.
    Scott ON, Begley MR, Komaragiri U, Mackin TJ (2004) Indentation of freestanding circular elastomer films using spherical indenters. Acta Mater 52(16):4877–4885CrossRefGoogle Scholar
  18. 18.
    Komaragiri U, Begley MR, Simmonds JG (2005) The mechanical response of freestanding circular elastic films under point and pressure loads. J Appl Mech 72(2):203–212CrossRefGoogle Scholar
  19. 19.
    ASTM-International (2013) ASTM D1708-13: Standard test method for tensile properties of plastics by use of microtensile specimensGoogle Scholar
  20. 20.
    Ogden RW (1973) Large deformation isotropic elasticity—on the correlation of theory and experiment for incomprensible rubberlike solids. Rubber Chem Technol 46(2):398–416CrossRefGoogle Scholar
  21. 21.
    Treloar LRG (2005) The physics of rubber elasticity. Oxford University Press, New YorkGoogle Scholar
  22. 22.
    Sutton MA, Orteu JJ, Shreier HW (2009) Image correlation for shape, motion and deformation measurements: basic concepts, theory and applications. Springer, New YorkGoogle Scholar
  23. 23.
    Murienne BJ, Nguyen TD (2016) A comparison of 2d and 3d digital image correlation for a membrane under inflation. Opt Lasers Eng 77(Supplement C):92–99CrossRefGoogle Scholar
  24. 24.
    GOM (2009) Aramis user manual software, optical measurements techniques. GOMGoogle Scholar
  25. 25.
    Kuntanoo K, Promkotra S, Kaewkannetra P (2015) Fabrication of novel polyhydroxybutyrate-co-hydroxyvalerate (PHBV) mixed with natural rubber latex. In: Materials science and technology VIII, volume 659 of key engineering materials, vol 9. Trans Tech Publications, pp 404–408Google Scholar
  26. 26.
    Eldho A, Deepa B, Pothan LA, Maya J, Narine SS, Thomas S, Anandjiwala R (2013) Physicomechanical properties of nanocomposites based on cellulose nanofibre and natural rubber latex. Cellulose 20(1):417–427CrossRefGoogle Scholar
  27. 27.
    Treloar LRG (1973) The elasticity and related properties of rubbers. Rep Prog Phys 36(7):755–826CrossRefGoogle Scholar
  28. 28.
    Dafader NC, Haque ME, Akhtar F, Ahmad MU (2006) Study on the properties of blend rubber between grafted rubber latex and natural rubber latex by gamma radiation. Polym Plast Technol Eng 45(7):889–892CrossRefGoogle Scholar
  29. 29.
    Borges FA, de Barros NR, Garms BC, Miranda MCR, Gemeinder JLP, Ribeiro-Paes JT, Silva RF, de Toledo KA, Herculano RD (2017) Application of natural rubber latex as scaffold for osteoblast to guided bone regeneration. J Appl Polym Sci 134(39):45321CrossRefGoogle Scholar
  30. 30.
    Li S, Li Z, Burnett TL, Slater TJA, Hashimoto T, Young RJ (2017) Nanocomposites of graphene nanoplatelets in natural rubber: microstructure and mechanisms of reinforcement. J Mater Sci 52(16):9558–9572.  https://doi.org/10.1007/s10853-017-1144-0 CrossRefGoogle Scholar
  31. 31.
    Phomrak S, Phisalaphong M (2017) Reinforcement of natural rubber with bacterial cellulose via a latex aqueous microdispersion process. J Nanomater 2017:1–9CrossRefGoogle Scholar
  32. 32.
    Lazarescu L, ComŞa D-S, Nicodim I, Ciobanu I, Banabic D (2012) Characterization of plastic behaviour of sheet metals by hydraulic bulge test. Trans Nonferrous Metals Soc China 22:s275–s279CrossRefGoogle Scholar
  33. 33.
    Wan K-T (1999) Fracture mechanics of a shaft-loaded blister test—transition from a bending plate to a stretching membrane. J Adhes 70(3–4):209–219CrossRefGoogle Scholar
  34. 34.
    Mooney M (1940) A theory of large elastic deformation. J Appl Phys 11(9):582–592CrossRefGoogle Scholar
  35. 35.
    Ju BF, Liu K-K (2002) Characterizing viscoelastic properties of thin elastomeric membrane. Mech Mater 34(8):485–491CrossRefGoogle Scholar
  36. 36.
    Taber LA (1982) Large deflection of a fluid-filled spherical shell under a point load. J Appl Mech 49(1):121–128CrossRefGoogle Scholar
  37. 37.
    Pearce SP, King JR, Holdsworth MJ (2011) Axisymmetric indentation of curved elastic membranes by a convex rigid indenter. Int J Non-Linear Mech 46(9):1128–1138CrossRefGoogle Scholar
  38. 38.
    Jin C, Davoodabadi A, Li J, Wang Y, Singler T (2017) Spherical indentation of a freestanding circular membrane revisited: analytical solutions and experiments. J Mech Phys Solids 100:85–102CrossRefGoogle Scholar
  39. 39.
    Wan K-T, Mai Y-W (1996) Fracture mechanics of a shaft-loaded blister of thin flexible membrane on rigid substrate. Int J Fract 74(2):181–197CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Instituto de Investigaciones en MaterialesUniversidad Nacional Autónoma de MéxicoMexicoMexico
  2. 2.Laboratorio de Ingeniería de Rehabilitación, Instituto Nacional de RehabilitaciónLuis Guillermo Ibarra IbarraMexicoMexico

Personalised recommendations