Journal of Materials Science

, Volume 54, Issue 21, pp 13594–13608 | Cite as

Unveiling the structures and electronic properties of CH3NH3PbI3 interfaces with TiO2, ZnO, and SnO2: a first-principles study

  • Nishat Sultana
  • Abdullah Al Amin
  • Dani Z. Metin
  • Nicola GastonEmail author
Computation & theory


In this report, we use first-principles calculations to study the methylammonium lead iodide (MAPI) perovskite interfaces with titanium dioxide (TiO2), zinc oxide (ZnO), and tin oxide (SnO2). Our study suggests that the binding energy of MAPI on SnO2 is weak compared to TiO2 and ZnO. However, we show that the strong binding to TiO2 and ZnO deprotonates CH3NH3 molecules which influences the decomposition process. Among the three interfaces studied in this report, TiO2-based interfaces showed the highest charge transfer followed by the interfaces formed on SnO2. We report a possible interfacial recombination mechanism inside MAPI/TiO2 and MAPI/SnO2 devices. Our study concludes that MAPI/SnO2 interfaces provide advantages due to their improved stability for perovskite solar cells.



We would like to acknowledge the contributions of NeSI high-performance computing facilities of New Zealand to the results of this research.

Compliance with ethical standards

Conflict of interest

The authors declare no conflicts of interest.


  1. 1.
    Kojima A, Teshima K, Shirai Y, Miyasaka T (2009) Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc 131(17):6050–6051. CrossRefGoogle Scholar
  2. 2.
    Yang D, Yang R, Wang K, Wu C, Zhu X, Feng J, Ren X, Fang G, Priya S, Liu S (2018) High efficiency planar-type perovskite solar cells with negligible hysteresis using EDTA-complexed SnO2. Nat Commun 9(1):3239. CrossRefGoogle Scholar
  3. 3.
    Xing G, Mathews N, Sun S, Lim SS, Lam YM, Grätzel M, Mhaisalkar S, Sum TC (2013) Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science 342(6156):344–347. CrossRefGoogle Scholar
  4. 4.
    Dong Q, Fang Y, Shao Y, Mulligan P, Qiu J, Cao L, Huang J (2015) Electron-hole diffusion lengths > 175 μm in solution grown CH3NH3PbI3 single crystals. Science 347(6225):967–970. CrossRefGoogle Scholar
  5. 5.
    Wehrenfennig C, Eperon GE, Johnston MB, Snaith HJ, Herz LM (2014) High charge carrier mobilities and lifetimes in organolead trihalide perovskites. Adv Mater (Deerfield Beach, Fla) 26(10):1584–1589. CrossRefGoogle Scholar
  6. 6.
    Sultana N, Demarais NJ, Shevchenko D, Derrick PJ (2018) Laser desorption/ionization mass spectrometry of perovskite solar cells: identification of interface interactions and degradation reactions. Solar RRL 2(8):1800022. CrossRefGoogle Scholar
  7. 7.
    Ke W, Fang G, Wan J, Tao H, Liu Q, Xiong L, Qin P, Wang J, Lei H, Yang G, Qin M, Zhao X, Yan Y (2015) Efficient hole-blocking layer-free planar halide perovskite thin-film solar cells. Nat Commun 6:6700. CrossRefGoogle Scholar
  8. 8.
    Liu H, Huang Z, Wei S, Zheng L, Xiao L, Gong Q (2016) Nano-structured electron transporting materials for perovskite solar cells. Nanoscale 8(12):6209–6221. CrossRefGoogle Scholar
  9. 9.
    Snaith HJ, Abate A, Ball JM, Eperon GE, Leijtens T, Noel NK, Stranks SD, Wang JT-W, Wojciechowski K, Zhang W (2014) Anomalous hysteresis in perovskite solar cells. J Phys Chem Lett 5(9):1511–1515. CrossRefGoogle Scholar
  10. 10.
    You J, Meng L, Song T-B, Guo T-F, Michael Yang Y, Chang W-H, Hong Z, Chen H, Zhou H, Chen Q, Liu Y, De Marco N, Yang Y (2015) Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. Nat Nanotechnol 11:75–81. CrossRefGoogle Scholar
  11. 11.
    Correa Baena JP, Steier L, Tress W, Saliba M, Neutzner S, Matsui T, Giordano F, Jacobsson TJ, Srimath Kandada AR, Zakeeruddin SM, Petrozza A, Abate A, Nazeeruddin MK, Grätzel M, Hagfeldt A (2015) Highly efficient planar perovskite solar cells through band alignment engineering. Energy Environ Sci 8(10):2928–2934. CrossRefGoogle Scholar
  12. 12.
    Liu D, Kelly TL (2014) Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nat Photon 8(2):133–138. CrossRefGoogle Scholar
  13. 13.
    Kim HS, Lee CR, Im JH, Lee KB, Moehl T, Marchioro A, Moon SJ, Humphry-Baker R, Yum JH, Moser JE, Gratzel M, Park NG (2012) Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci Rep 2:591. CrossRefGoogle Scholar
  14. 14.
    Burschka J, Pellet N, Moon SJ, Humphry-Baker R, Gao P, Nazeeruddin MK, Gratzel M (2013) Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499(7458):316–319. CrossRefGoogle Scholar
  15. 15.
    Qin P, Tanaka S, Ito S, Tetreault N, Manabe K, Nishino H, Nazeeruddin MK, Gratzel M (2014) Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency. Nat Commun 5:3834. CrossRefGoogle Scholar
  16. 16.
    Christians JA, Fung RCM, Kamat PV (2014) An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide. J Am Chem Soc 136(2):758–764. CrossRefGoogle Scholar
  17. 17.
    Jeng J-Y, Chen K-C, Chiang T-Y, Lin P-Y, Tsai T-D, Chang Y-C, Guo T-F, Chen P, Wen T-C, Hsu Y-J (2014) Nickel oxide electrode interlayer in CH3NH3PbI3 perovskite/PCBM planar-heterojunction hybrid solar cells. Adv Mater 26(24):4107–4113. CrossRefGoogle Scholar
  18. 18.
    Ke W, Fang G, Liu Q, Xiong L, Qin P, Tao H, Wang J, Lei H, Li B, Wan J, Yang G, Yan Y (2015) Low-temperature solution-processed tin oxide as an alternative electron transporting layer for efficient perovskite solar cells. J Am Chem Soc 137(21):6730–6733. CrossRefGoogle Scholar
  19. 19.
    Shi Z, Jayatissa AH (2018) Perovskites-based solar cells: a review of recent progress. Mater Process Methods Mater 11(5):729. Google Scholar
  20. 20.
    Akbari A, Hashemi J, Mosconi E, De Angelis F, Hakala M (2017) First principles modelling of perovskite solar cells based on TiO2 and Al2O3: stability and interfacial electronic structure. J Mater Chem A 5(5):2339–2345. CrossRefGoogle Scholar
  21. 21.
    Geng W, Tong C-J, Liu J, Zhu W, Lau W-M, Liu L-M (2016) Structures and electronic properties of different CH3NH3PbI3/TiO2 interface: a first-principles study. Sci Rep 6:20131. CrossRefGoogle Scholar
  22. 22.
    Mosconi E, Azpiroz JM, De Angelis F (2015) Ab Initio molecular dynamics simulations of methylammonium lead iodide perovskite degradation by water. Chem Mater 27(13):4885–4892. CrossRefGoogle Scholar
  23. 23.
    Nicolaev A, Mitran TL, Iftimie S, Nemnes GA (2016) Optimization of halide perovskite solar cells based on nanocolumnar ZnO. Sol Energy Mater Sol Cells 158:202–208. CrossRefGoogle Scholar
  24. 24.
    Haruyama J, Sodeyama K, Hamada I, Han L, Tateyama Y (2017) First-principles study of electron injection and defects at the TiO2/CH3NH3PbI3 interface of perovskite solar cells. J Phys Chem Lett 8(23):5840–5847. CrossRefGoogle Scholar
  25. 25.
    Listorti A, Juarez-Perez EJ, Frontera C, Roiati V, Garcia-Andrade L, Colella S, Rizzo A, Ortiz P, Mora-Sero I (2015) Effect of mesostructured layer upon crystalline properties and device performance on perovskite solar cells. J Phys Chem Lett 6(9):1628–1637. CrossRefGoogle Scholar
  26. 26.
    Lee J-W, Lee T-Y, Yoo PJ, Grätzel M, Mhaisalkar S, Park N-G (2014) Rutile TiO2-based perovskite solar cells. J Mater Chem A 2(24):9251–9259. CrossRefGoogle Scholar
  27. 27.
    Wöll C (2007) The chemistry and physics of zinc oxide surfaces. Prog Surf Sci 82(2):55–120. CrossRefGoogle Scholar
  28. 28.
    Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54(16):11169–11186. CrossRefGoogle Scholar
  29. 29.
    Perdew JP, Zunger A (1981) Self-interaction correction to density-functional approximations for many-electron systems. Phys Rev B 23(10):5048–5079. CrossRefGoogle Scholar
  30. 30.
    Ceperley DM, Alder BJ (1980) Ground state of the electron gas by a stochastic method. Phys Rev Lett 45(7):566–569. CrossRefGoogle Scholar
  31. 31.
    Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50(24):17953–17979. CrossRefGoogle Scholar
  32. 32.
    Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13(12):5188–5192. CrossRefGoogle Scholar
  33. 33.
    Momma K, Izumi F (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Crystallogr 44(6):1272–1276. CrossRefGoogle Scholar
  34. 34.
    Thind AS, Huang X, Sun J, Mishra R (2017) First-principles prediction of a stable hexagonal phase of CH3NH3PbI3. Chem Mater 29(14):6003–6011. CrossRefGoogle Scholar
  35. 35.
    Howard CJ, Sabine TM, Dickson F (1991) Structural and thermal parameters for rutile and anatase. Acta Crystallogr Sect B 47(4):462–468. CrossRefGoogle Scholar
  36. 36.
    Kayani ZN, Saleemi F, Batool I (2015) Effect of calcination temperature on the properties of ZnO nanoparticles. Appl Phys A 119(2):713–720. CrossRefGoogle Scholar
  37. 37.
    Toledo-Antonio JA, Gutiérrez-Baez R, Sebastian PJ, Vázquez A (2003) Thermal stability and structural deformation of rutile SnO2 nanoparticles. J Solid State Chem 174(2):241–248. CrossRefGoogle Scholar
  38. 38.
    Mosconi E, Ronca E, De Angelis F (2014) First-principles investigation of the TiO2/organohalide perovskites interface: the role of interfacial chlorine. J Phys Chem Lett 5(15):2619–2625. CrossRefGoogle Scholar
  39. 39.
    Goh ES, Mah JW, Yoon TL (2017) Effects of Hubbard term correction on the structural parameters and electronic properties of wurtzite ZnO. Comput Mater Sci 138:111–116. CrossRefGoogle Scholar
  40. 40.
    Rivera R, Marcillo F, Chamba A, Puchaicela P, Stashans A (2014) Quantum chemical study of point defects in tin dioxide. In: Transactions on engineering technologies, vol 275. Springer, Dordrecht, pp 13–24Google Scholar
  41. 41.
    Vaspwiki (March 2011). Accessed 04 Feb 2019
  42. 42.
    Geng W, Zhang L, Zhang Y-N, Lau W-M, Liu L-M (2014) First-principles study of lead iodide perovskite tetragonal and orthorhombic phases for photovoltaics. J Phys Chem C 118(34):19565–19571. CrossRefGoogle Scholar
  43. 43.
    Dkhissi Y, Braunger S, Chen D, Weerasinghe H, Spiccia L, Cheng Y-B, Caruso AR (2016) Stability comparison of perovskite solar cells based on zinc oxide and titania on polymer substrates. Chemsuschem 9:687–695. CrossRefGoogle Scholar
  44. 44.
    Yang J, Siempelkamp BD, Mosconi E, De Angelis F, Kelly TL (2015) Origin of the thermal instability in CH3NH3PbI3 thin films deposited on ZnO. Chem Mater 27(12):4229–4236. CrossRefGoogle Scholar
  45. 45.
    Casalegno M, Pastore R, Idé J, Po R, Raos G (2017) Origin of charge separation at organic photovoltaic heterojunctions: a mesoscale quantum mechanical view. J Phys Chem C 121(31):16693–16701. CrossRefGoogle Scholar
  46. 46.
    Kogo A, Sanehira Y, Numata Y, Ikegami M, Miyasaka T (2018) Amorphous metal oxide blocking layers for highly efficient low-temperature brookite TiO2-based perovskite solar cells. ACS Appl Mater Interfaces 10(3):2224–2229. CrossRefGoogle Scholar
  47. 47.
    Dong Q, Shi Y, Wang K, Li Y, Wang S, Zhang H, Xing Y, Du Y, Bai X, Ma T (2015) Insight into perovskite solar cells based on SnO2 compact electron-selective layer. J Phys Chem C 119(19):10212–10217. CrossRefGoogle Scholar
  48. 48.
    Gong C, Colombo L, Wallace RM, Cho K (2014) The unusual mechanism of partial fermi level pinning at metal–MoS2 interfaces. Nano Lett 14(4):1714–1720. CrossRefGoogle Scholar
  49. 49.
    Chen K, Kamran S (2013) Bonding characteristics of TiC and TiN. Model Numer Simul Mater Sci 3:1–5. Google Scholar
  50. 50.
    Lindblad R, Bi D, Park B-w, Oscarsson J, Gorgoi M, Siegbahn H, Odelius M, Johansson EMJ, Rensmo H (2014) Electronic structure of TiO2/CH3NH3PbI3 perovskite solar cell interfaces. J Phys Chem Lett 5(4):648–653. CrossRefGoogle Scholar
  51. 51.
    Si F, Hu W, Tang F, Cheng Y, Xue H (2017) Electronic and optical properties of the wurtzite-ZnO/CH3NH3PbI3 interface: first-principles calculations. J Mater Sci 52(24):13841–13851. CrossRefGoogle Scholar
  52. 52.
    Javaid S, Myung CW, Yun J, Lee G, Kim KS (2018) Organic cation steered interfacial electron transfer within organic–inorganic perovskite solar cells. J Mater Chem A 6(10):4305–4312. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.The MacDiarmid Institute for Advanced Materials and Nanotechnology, Department of PhysicsThe University of AucklandAucklandNew Zealand
  2. 2.Case Western Reserve UniversityClevelandUSA

Personalised recommendations